Advertisement

Eosinophils pp 71-80 | Cite as

Eosinophil Intracellular Signalling: Apoptosis

  • Pinja Ilmarinen
  • Eeva Moilanen
  • Hannu KankaanrantaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1178)

Abstract

Eosinophil apoptosis is considered critical for the resolution of eosinophilic inflammation in the airways of asthmatics. Apoptosis can be mediated by an extrinsic receptor-activated pathway or alternatively by an intrinsic pathway via distortion of mitochondrial function. Both of these pathways lead to activation of the caspase cascade resulting in degradation of cellular components. We describe here two methods to explore intracellular mechanisms mediating eosinophil apoptosis. Eosinophil staining by fluorescent probe JC-1 followed by flow cytometric analysis is a reliable method for determination of the state of mitochondrial membrane potential (∆Ψm). Lost ∆Ψm indicates distorted mitochondrial function and apoptosis. We also describe a method to explore the activation of effector caspase-6 by assessing degradation of its substrate lamin A/C by immunoblotting.

Key words

Eosinophils Apoptosis Mitochondrial membrane potential JC-1 Caspase-6 Lamin A/C Immunoblotting 

References

  1. 1.
    Ilmarinen P, Hasala H, Sareila O et al (2009) Bacterial DNA delays human eosinophil apoptosis. Pulm Pharmacol Ther 22:167–176PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang X, Moilanen E, Kankaanranta H (2000) Enhancement of human eosinophil apoptosis by fluticasone propionate, budesonide, and beclomethasone. Eur J Pharmacol 406:325–332PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang X, Moilanen E, Adcock IM et al (2002) Divergent effect of mometasone on human eosinophil and neutrophil apoptosis. Life Sci 71:1523–1534PubMedCrossRefGoogle Scholar
  4. 4.
    Kankaanranta H, Moilanen E, Zhang X (2005) Pharmacological regulation of human eosinophil apoptosis. Curr Drug Targets Inflamm Allergy 4:433–445PubMedCrossRefGoogle Scholar
  5. 5.
    Galluzzi L, Vitale I, Abrams JM et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Letuve S, Druilhe A, Grandsaigne M et al (2001) Involvement of caspases and of mitochondria in Fas ligation-induced eosinophil apoptosis: modulation by interleukin-5 and interferon-gamma. J Leukoc Biol 70:767–775PubMedGoogle Scholar
  7. 7.
    Gardai SJ, Hoontrakoon R, Goddard CD et al (2003) Oxidant-mediated mitochondrial injury in eosinophil apoptosis: enhancement by glucocorticoids and inhibition by granulocyte-macrophage colony-stimulating factor. J Immunol 170:556–566PubMedCrossRefGoogle Scholar
  8. 8.
    Ilmarinen-Salo P, Moilanen E, Kinnula VL et al (2012) Nitric oxide-induced eosinophil apoptosis is dependent on mitochondrial permeability transition (mPT), JNK and oxidative stress: apoptosis is preceded but not mediated by early mPT-dependent JNK activation. Respir Res 13:73. doi: 10.1186/1465-9921-13-73 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Dewson G, Cohen GM, Wardlaw AJ (2001) Interleukin-5 inhibits translocation of Bax to the mitochondria, cytochrome c release, and activation of caspases in human eosinophils. Blood 98:2239–2247PubMedCrossRefGoogle Scholar
  10. 10.
    Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632PubMedCrossRefGoogle Scholar
  11. 11.
    Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284:21777–21781PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Zangrilli J, Robertson N, Shetty A et al (2000) Effect of IL-5, glucocorticoid, and Fas ligation on Bcl-2 homologue expression and caspase activation in circulating human eosinophils. Clin Exp Immunol 120:12–21PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ilmarinen-Salo P, Moilanen E, Kankaanranta H (2010) Nitric oxide induces apoptosis in GM-CSF-treated eosinophils via caspase-6-dependent lamin and DNA fragmentation. Pulm Pharmacol Ther 23:365–371PubMedCrossRefGoogle Scholar
  14. 14.
    Kankaanranta H, Ilmarinen P, Zhang X et al (2006) Antieosinophilic activity of orazipone. Mol Pharmacol 69:1861–1870PubMedCrossRefGoogle Scholar
  15. 15.
    Hasala H, Giembycz MA, Janka-Junttila M et al (2008) Histamine reverses IL-5-afforded human eosinophil survival by inducing apoptosis: pharmacological evidence for a novel mechanism of action of histamine. Pulm Pharmacol Ther 21:222–233PubMedCrossRefGoogle Scholar
  16. 16.
    Salvioli S, Ardizzoni A, Franceschi C et al (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411:77–82PubMedCrossRefGoogle Scholar
  17. 17.
    Perry SW, Norman JP, Barbieri J et al (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50:98–115PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Orth K, Chinnaiyan AM, Garg M et al (1996) The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J Biol Chem 271:16443–16446PubMedCrossRefGoogle Scholar
  19. 19.
    Takahashi A, Alnemri ES, Lazebnik YA et al (1996) Cleavage of lamin A by Mch2 alpha but not CPP32: multiple interleukin 1 beta-converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis. Proc Natl Acad Sci U S A 93:8395–8400PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Pinja Ilmarinen
    • 1
  • Eeva Moilanen
    • 1
  • Hannu Kankaanranta
    • 1
    • 2
    • 3
    Email author
  1. 1.The Immunopharmacology Research GroupUniversity of Tampere School of Medicine and Tampere University HospitalTampereFinland
  2. 2.Department of Respiratory MedicineSeinäjoki Central HospitalSeinäjokiFinland
  3. 3.Department of Respiratory MedicineUniversity of TampereTampereFinland

Personalised recommendations