Eosinophils pp 29-43 | Cite as

CD34+ Eosinophil-Lineage-Committed Cells in the Mouse Lung

  • Apostolos Bossios
  • Madeleine RådingerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1178)


Several studies suggest that eosinophil progenitor cells are capable of extramedullary proliferation but also enhance chronic inflammation via their own production of inflammatory and chemotactic mediators, thus augmenting the degree of inflammation by recruitment of more progenitors or mature effector cells, such as eosinophils at the site of inflammation. In this chapter, we provide methods focused on detecting eosinophil progenitor cells in the lung of allergen-challenged mice and how to monitor their proliferation capacity.

Key words

Allergy Asthma Bone marrow Lung Eosinophil progenitors In situ hematopoiesis CD34 IL-5Ra CCR3 Fluorescence-activated cell (FACS) 



The authors would like to thank Dr. Carina Malmhäll and Dr. You Lu, Krefting Research Centre, Gothenburg University for participating in the improvement and optimization of the Flow Cytometry protocols used at Krefting Research Centre and the generation of the original data showed in the figures.


  1. 1.
    Sehmi R, Baatjes AJ, Denburg JA (2003) Hemopoietic progenitor cells and hemopoietic factors: potential targets for treatment of allergic inflammatory diseases. Curr Drug Targets Inflamm Allergy 2:271–278PubMedCrossRefGoogle Scholar
  2. 2.
    Radinger M, Lotvall J (2009) Eosinophil progenitors in allergy and asthma—do they matter? Pharmacol Ther 121:174–184PubMedCrossRefGoogle Scholar
  3. 3.
    Sergejeva S, Johansson AK, Malmhall C, Lotvall J (2004) Allergen exposure-induced differences in CD34+ cell phenotype: relationship to eosinophilopoietic responses in different compartments. Blood 103:1270–1277PubMedCrossRefGoogle Scholar
  4. 4.
    Iwasaki H, Mizuno S, Mayfield R, Shigematsu H, Arinobu Y et al (2005) Identification of eosinophil lineage-committed progenitors in the murine bone marrow. J Exp Med 201:1891–1897PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Robinson DS, Damia R, Zeibecoglou K, Molet S, North J et al (1999) CD34(+)/interleukin-5Ralpha messenger RNA+ cells in the bronchial mucosa in asthma: potential airway eosinophil progenitors. Am J Respir Cell Mol Biol 20:9–13PubMedCrossRefGoogle Scholar
  6. 6.
    Menzies-Gow AN, Flood-Page PT, Robinson DS, Kay AB (2007) Effect of inhaled interleukin-5 on eosinophil progenitors in the bronchi and bone marrow of asthmatic and non-asthmatic volunteers. Clin Exp Allergy 37:1023–1032PubMedCrossRefGoogle Scholar
  7. 7.
    Dorman SC, Efthimiadis A, Babirad I, Watson RM, Denburg JA et al (2004) Sputum CD34+ IL-5Ralpha+ cells increase after allergen: evidence for in situ eosinophilopoiesis. Am J Respir Crit Care Med 169:573–577PubMedCrossRefGoogle Scholar
  8. 8.
    Southam DS, Widmer N, Ellis R, Hirota JA, Inman MD et al (2005) Increased eosinophil-lineage committed progenitors in the lung of allergen-challenged mice. J Allergy Clin Immunol 115:95–102PubMedCrossRefGoogle Scholar
  9. 9.
    Punia N, Smith S, Thomson JV, Irshad A, Nair P et al (2012) Interleukin-4 and interleukin-13 prime migrational responses of haemopoietic progenitor cells to stromal cell-derived factor-1alpha. Clin Exp Allergy 42:255–264PubMedCrossRefGoogle Scholar
  10. 10.
    Radinger M, Bossios A, Sjostrand M, Lu Y, Malmhall C et al (2011) Local proliferation and mobilization of CCR3(+) CD34(+) eosinophil-lineage-committed cells in the lung. Immunology 132:144–154PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Dyer KD, Garcia-Crespo KE, Percopo CM, Sturm EM, Rosenberg HF (2013) Protocols for identifying, enumerating, and assessing mouse eosinophils. Methods Mol Biol 1032:59–77PubMedCrossRefGoogle Scholar
  12. 12.
    Kuo HP, Wang CH, Lin HC, Hwang KS, Liu SL et al (2001) Interleukin-5 in growth and differentiation of blood eosinophil progenitors in asthma: effect of glucocorticoids. Br J Pharmacol 134:1539–1547PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Herzenberg LA, Tung J, Moore WA, Parks DR (2006) Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol 7:681–685PubMedCrossRefGoogle Scholar
  14. 14.
    Wood B (2006) 9-color and 10-color flow cytometry in the clinical laboratory. Arch Pathol Lab Med 130:680–690PubMedGoogle Scholar
  15. 15.
    Freer G, Rindi L (2013) Intracellular cytokine detection by fluorescence-activated flow cytometry: basic principles and recent advances. Methods 61:30–38PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  1. 1.Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden

Personalised recommendations