Eosinophils pp 309-320 | Cite as

Murine Models of Eosinophilic Leukemia: A Model of FIP1L1-PDGFRα Initiated Chronic Eosinophilic Leukemia/Systemic Mastocytosis

  • Yoshiyuki YamadaEmail author
  • Jose A. Cancelas
  • Marc E. Rothenberg
Part of the Methods in Molecular Biology book series (MIMB, volume 1178)


Chronic eosinophilic leukemia (CEL) was distinguished from hypereosinophilic syndrome (HES) in the 2001 World Health Organization (WHO) criteria. Subsequently, the FIP1L1-PDGFRα (F/P) fusion tyrosine kinase was identified in patients with HES and found to be the most common clonal defect in CEL and the second most frequent mutation in systemic mastocytosis (SM). Introduction of F/P into bone marrow hematopoietic stem cells and progenitors has been used to establish murine models of F/P-myeloproliferative neoplasm and F/P–CEL. IL-5 overexpression and introduction of F/P is required to develop murine CEL. This F/P-CEL model is thought to be an accurate model of the clinical disease. Here we describe the method of F/P-CEL/SM model development and assessment.

Key words

FIP1L1-PDGFRα Chronic eosinophilic leukemia (CEL) Hypereosinophilic syndromes (HES) Systemic mastocytosis (SM) Eosinophils 



A Part of this project was supported by Research on Intractable Diseases, Health and Labour Sciences research grants from the Ministry of Health, Labour and Welfare of Japan and by a Grant-in-Aid for Scientific Research C from the Ministry of Education, Culture, Sports, Science and Technology of Japan.


  1. 1.
    Bain B, Pierre R, Imbert M, Vardiman JW, Brunning RD, Flandrin G (2001) Chronic eosinophilic leukaemia and the hypereosinophilic syndrome. IARC Press, Lyon, FranceGoogle Scholar
  2. 2.
    Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, Kutok J, Clark J, Galinsky I, Griffin JD, Cross NC, Tefferi A, Malone J, Alam R, Schrier SL, Schmid J, Rose M, Vandenberghe P, Verhoef G, Boogaerts M, Wlodarska I, Kantarjian H, Marynen P, Coutre SE, Stone R, Gilliland DG (2003) A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348:1201–1214PubMedCrossRefGoogle Scholar
  3. 3.
    Griffin JH, Leung J, Bruner RJ, Caligiuri MA, Briesewitz R (2003) Discovery of a fusion kinase in EOL-1 cells and idiopathic hypereosinophilic syndrome. Proc Natl Acad Sci U S A 100:7830–7835. doi: 10.1073/pnas.0932698100, 0932698100 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Gotlib J (2012) World Health Organization-defined eosinophilic disorders: 2012 update on diagnosis, risk stratification, and management. Am J Hematol 87:903–914. doi: 10.1002/ajh.23293 PubMedCrossRefGoogle Scholar
  5. 5.
    Cools J, Stover EH, Boulton CL, Gotlib J, Legare RD, Amaral SM, Curley DP, Duclos N, Rowan R, Kutok JL, Lee BH, Williams IR, Coutre SE, Stone RM, DeAngelo DJ, Marynen P, Manley PW, Meyer T, Fabbro D, Neuberg D, Weisberg E, Griffin JD, Gilliland DG (2003) PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFRalpha-induced myeloproliferative disease. Cancer Cell 3: 459–469PubMedCrossRefGoogle Scholar
  6. 6.
    Roche-Lestienne C, Lepers S, Soenen-Cornu V, Kahn JE, Lai JL, Hachulla E, Drupt F, Demarty AL, Roumier AS, Gardembas M, Dib M, Philippe N, Cambier N, Barete S, Libersa C, Bletry O, Hatron PY, Quesnel B, Rose C, Maloum K, Blanchet O, Fenaux P, Prin L, Preudhomme C (2005) Molecular characterization of the idiopathic hypereosinophilic syndrome (HES) in 35 French patients with normal conventional cytogenetics. Leukemia 19:792–798PubMedCrossRefGoogle Scholar
  7. 7.
    Klion AD, Law MA, Noel P, Kim YJ, Haverty TP, Nutman TB (2004) Safety and efficacy of the monoclonal anti-interleukin-5 antibody SCH55700 in the treatment of patients with hypereosinophilic syndrome. Blood 103: 2939–2941PubMedCrossRefGoogle Scholar
  8. 8.
    Yamada Y, Rothenberg ME, Lee AW, Akei HS, Brandt EB, Williams DA, Cancelas JA (2006) The FIP1L1-PDGFRA fusion gene cooperates with IL-5 to induce murine hypereosinophilic syndrome (HES)/chronic eosinophilic leukemia (CEL)-like disease. Blood 107: 4071–4079PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Yamada Y, Sanchez-Aguilera A, Brandt EB, McBride M, Al-Moamen NJ, Finkelman FD, Williams DA, Cancelas JA, Rothenberg ME (2008) FIP1L1/PDGFRalpha synergizes with SCF to induce systemic mastocytosis in a murine model of chronic eosinophilic leukemia/hypereosinophilic syndrome. Blood 112: 2500–2507PubMedCrossRefGoogle Scholar
  10. 10.
    Fukushima K, Matsumura I, Ezoe S, Tokunaga M, Yasumi M, Satoh Y, Shibayama H, Tanaka H, Iwama A, Kanakura Y (2009) FIP1L1-PDGFRalpha imposes eosinophil lineage commitment on hematopoietic stem/progenitor cells. J Biol Chem 284:7719–7732. doi: 10.1074/jbc.M807489200, M807489200 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Li B, Zhang G, Li C, He D, Li X, Zhang C, Tang F, Deng X, Lu J, Tang Y, Li R, Chen Z, Duan C (2012) Identification of JAK2 as a mediator of FIP1L1-PDGFRA-induced eosinophil growth and function in CEL. PLoS ONE 7: e34912. doi 10.1371/journal.pone.0034912. PONE-D-11-17321 [pii]Google Scholar
  12. 12.
    Mishra A, Hogan SP, Brandt EB, Rothenberg ME (2002) IL-5 promotes eosinophil trafficking to the esophagus. J Immunol 168:2464–2469PubMedCrossRefGoogle Scholar
  13. 13.
    Williams DA, Tao W, Yang F, Kim C, Gu Y, Mansfield P, Levine JE, Petryniak B, Derrow CW, Harris C, Jia B, Zheng Y, Ambruso DR, Lowe JB, Atkinson SJ, Dinauer MC, Boxer L (2000) Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood 96:1646–1654PubMedGoogle Scholar
  14. 14.
    Discombe G (1946) Criteria of eosinophilia. Lancet 1:195PubMedCrossRefGoogle Scholar
  15. 15.
    Yang S, Delgado R, King SR, Woffendin C, Barker CS, Yang ZY, Xu L, Nolan GP, Nabel GJ (1999) Generation of retroviral vector for clinical studies using transient transfection. Hum Gene Ther 10:123–132. doi: 10.1089/10430349950019255 PubMedCrossRefGoogle Scholar
  16. 16.
    Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA (2005) Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 11:886–891, doi: nm1274 [pii]. 10.1038/nm1274PubMedCrossRefGoogle Scholar
  17. 17.
    Minns LA, Menard LC, Foureau DM, Darche S, Ronet C, Mielcarz DW, Buzoni-Gatel D, Kasper LH (2006) TLR9 is required for the gut-associated lymphoid tissue response following oral infection of Toxoplasma gondii. J Immunol 176:7589–7597, doi: 176/12/7589 [pii]PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Yoshiyuki Yamada
    • 1
    Email author
  • Jose A. Cancelas
    • 2
    • 3
  • Marc E. Rothenberg
    • 4
  1. 1.Division of Allergy and ImmunologyGunma Children’s Medical CenterShibukawaJapan
  2. 2.Division of Experimental Hematology, Department of PediatricsCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.Hoxworth Blood CenterUniversity of Cincinnati College of MedicineCincinnatiUSA
  4. 4.Division of Allergy and Immunology, Department of PediatricsCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations