Eosinophils pp 267-281 | Cite as

Antimicrobial Activity of Human Eosinophil Granule Proteins

  • Anu Chopra
  • Janendra K. BatraEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1178)


Eosinophils secrete a number of proinflammatory mediators, like cytokines, chemokines, and granule proteins which are responsible for the initiation and sustenance of inflammatory response caused by them. The eosinophil granule proteins, ECP, EDN, MBP, and EPO possess antimicrobial activity against bacteria, helminths, protozoa, and viruses. In this chapter, we describe various assays used to detect and quantitate the antimicrobial activities of eosinophil granule proteins, particularly ECP and EDN. We have taken a model organism for each assay and described the method for antiviral, antihelminthic, antiprotozoan, and antibacterial activity of purified eosinophil granule proteins.

Key words

Eosinophil granule protein Antiviral Antibacterial Antihelminthic Antiprotozoan 


  1. 1.
    Walsh GM (2001) Eosinophil granule proteins and their role in disease. Curr Opin Hematol 8:28–33PubMedCrossRefGoogle Scholar
  2. 2.
    Weller PF (1991) The immunology of eosinophils. N Engl J Med 324(16):1110–1118PubMedCrossRefGoogle Scholar
  3. 3.
    Gleich GJ, Adolphson CR, Leiferman KM (1993) The biology of the eosinophilic leukocyte. Annu Rev Med 44:85–101PubMedCrossRefGoogle Scholar
  4. 4.
    Kita H, Adolphson, CR, Gleich, GJ (1998) Biology of eosinophils. In Allergy: principles and practice (5th ed), Middleton Jr E, Reed CE, Ellis EF, Adkinson Jr NF, Yunginger JW, Busse WW (Eds.), Mosby, St Louis, pp 242–260Google Scholar
  5. 5.
    Durack DT, Sumi SM, Klebanoff SJ (1979) Neurotoxicity of human eosinophils. Proc Natl Acad Sci U S A 76:1443–1447PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Gordon MH (1933) Remarks on Hodgkin’s disease: a pathogenic agent in the glands, and its application in diagnosis. Br Med J 1: 641–644PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Venge P, Bystrom J, Carlson M, Hakansson L, Karawacjzyk M, Peterson C, Seveus L, Trulson A (1999) Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy 29:1172–1186PubMedCrossRefGoogle Scholar
  8. 8.
    Boix E, Carreras E, Nikolovski Z, Cuchillo CM, Nogues MV (2001) Identification and characterization of human eosinophil cationic protein by an epitope-specific antibody. J Leukoc Biol 69:1027–1035PubMedGoogle Scholar
  9. 9.
    Wever R, Hamers MN, Weening RS, Roos D (1980) Characterization of the peroxidase in human eosinophils. Eur J Biochem 108: 491–495PubMedCrossRefGoogle Scholar
  10. 10.
    Henderson WR, Chi EY, Klebanoff SJ (1980) Eosinophil peroxidase-induced mast cell secretion. J Exp Med 152:265–279PubMedCrossRefGoogle Scholar
  11. 11.
    Motojima S, Frigas E, Loegering DA, Gleich GJ (1989) Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am Rev Respir Dis 139:801–805PubMedCrossRefGoogle Scholar
  12. 12.
    Butterworth AE, David JR, Franks D, Mahmoud AA, David PH, Sturrock RF, Houba V (1977) Antibody-dependent eosinophil-mediated damage to 51Cr-labeled schistosomula of Schistosoma mansoni: damage by purified eosinophils. J Exp Med 145:136–150PubMedCrossRefGoogle Scholar
  13. 13.
    Gleich GJ, Adolphson CR (1986) The eosinophilic leukocyte: structure and function. Adv Immunol 39:177–253PubMedCrossRefGoogle Scholar
  14. 14.
    Butterworth AE (1984) Cell-mediated damage to helminths. Adv Parasitol 23:143–235PubMedCrossRefGoogle Scholar
  15. 15.
    Ackerman SJ, Gleich GJ, Loegering DA, Richardson BA, Butterworth AE (1985) Comparative toxicity of purified human eosinophil granule cationic proteins for schistosomula of Schistosoma mansoni. Am J Trop Med Hyg 34:735–745PubMedGoogle Scholar
  16. 16.
    Hamann KJ, Barker RL, Loegering DA, Gleich GJ (1987) Comparative toxicity of purified human eosinophil granule proteins for newborn larvae of Trichinella spiralis. J Parasitol 73:523–529PubMedCrossRefGoogle Scholar
  17. 17.
    Hamann KJ, Gleich GJ, Checkel JL, Loegering DA, McCall JW, Barker RL (1990) In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins. J Immunol 144:3166–3173PubMedGoogle Scholar
  18. 18.
    Villalta F, Kierszenbaum F (1984) Role of inflammatory cells in Chagas’ disease. I. Uptake and mechanism of destruction of intracellular (amastigote) forms of Trypanosoma cruzi by human eosinophils. J Immunol 132:2053–2058PubMedGoogle Scholar
  19. 19.
    Kierszenbaum F, Villalta F, Tai PC (1986) Role of inflammatory cells in Chagas’ disease. III. Kinetics of human eosinophil activation upon interaction with parasites (Trypanosoma cruzi). J Immunol 136:662–666PubMedGoogle Scholar
  20. 20.
    Molina HA, Kierszenbaum F, Hamann KJ, Gleich GJ (1988) Toxic effects produced or mediated by human eosinophil granule components on Trypanosoma cruzi. Am J Trop Med Hyg 38:327–334PubMedGoogle Scholar
  21. 21.
    Waters LS, Taverne J, Tai PC, Spry CJ, Targett GA, Playfair JH (1987) Killing of Plasmodium falciparum by eosinophil secretory products. Infect Immun 55:877–881PubMedCentralPubMedGoogle Scholar
  22. 22.
    Singh A, Batra JK (2011) Role of unique basic residues in cytotoxic, antibacterial and antiparasitic activities of human eosinophil cationic protein. Biol Chem 392:337–346PubMedCrossRefGoogle Scholar
  23. 23.
    Borelli V, Vita F, Shankar S, Soranzo MR, Banfi E, Scialino G, Brochetta C, Zabucchi G (2003) Human eosinophil peroxidase induces surface alteration, killing, and lysis of Mycobacterium tuberculosis. Infect Immun 71: 605–613PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Jong EC, Mahmoud AA, Klebanoff SJ (1981) Peroxidase-mediated toxicity to schistosomula of Schistosoma mansoni. J Immunol 126: 468–471PubMedGoogle Scholar
  25. 25.
    Buys J, Wever R, Ruitenberg EJ (1984) Myeloperoxidase is more efficient than eosinophil peroxidase in the in vitro killing of newborn larvae of Trichinella spiralis. Immunology 51:601–607PubMedCentralPubMedGoogle Scholar
  26. 26.
    Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ (1989) Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol 142:4428–4434PubMedGoogle Scholar
  27. 27.
    Svensson L, Wenneras C (2005) Human eosinophils selectively recognize and become activated by bacteria belonging to different taxonomic groups. Microbes Infect 7: 720–728PubMedCrossRefGoogle Scholar
  28. 28.
    Aydemir SA, Tekin IO, Numanoglu G, Borazan A, Ustundag Y (2004) Eosinophil infiltration, gastric juice and serum eosinophil cationic protein levels in Helicobacter pylori-associated chronic gastritis and gastric ulcer. Mediators Inflamm 13:369–372PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Qadri F, Bhuiyan TR, Dutta KK, Raqib R, Alam MS, Alam NH, Svennerholm AM, Mathan MM (2004) Acute dehydrating disease caused by Vibrio cholerae serogroups O1 and O139 induce increases in innate cells and inflammatory mediators at the mucosal surface of the gut. Gut 53:62–69PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Raqib R, Moly PK, Sarker P, Qadri F, Alam NH, Mathan M, Andersson J (2003) Persistence of mucosal mast cells and eosinophils in Shigella-infected children. Infect Immun 71:2684–2692PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Domachowske JB, Dyer KD, Bonville CA, Rosenberg HF (1998) Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis 177: 1458–1464PubMedCrossRefGoogle Scholar
  32. 32.
    Bedoya VI, Boasso A, Hardy AW, Rybak S, Shearer GM, Rugeles MT (2006) Ribonucleases in HIV type 1 inhibition: effect of recombinant RNases on infection of primary T cells and immune activation-induced RNase gene and protein expression. AIDS Res Hum Retroviruses 22:897–907PubMedCrossRefGoogle Scholar
  33. 33.
    Ding J, Liu J, Xue CF, Li YH, Gong WD (2003) Construction and expression of prokaryotic expression vector for pTAT-HBV targeted ribonuclease fusion protein. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 9: 49–51Google Scholar
  34. 34.
    Slifman NR, Loegering DA, Mckean DJ, Gleich GJ (1986) Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein. J Immunol 137: 2913–2917PubMedGoogle Scholar
  35. 35.
    Sikriwal D, Seth D, Dey P, Batra JK (2007) Human eosinophil-derived neurotoxin: involvement of a putative non-catalytic phosphate-binding subsite in its catalysis. Mol Cell Biochem 303(1–2):175–181PubMedCrossRefGoogle Scholar
  36. 36.
    Yazdanbakhsh M, Tai PC, Spry CJ, Gleich GJ, Roos D (1987) Synergism between eosinophil cationic protein and oxygen metabolites in killing of schistosomula of Schistosoma mansoni. J Immunol 138:3443–3447PubMedGoogle Scholar
  37. 37.
    Lewis F (1999) Schistosomiasis. In: Coico R (ed) Current protocols in immunology, vol III. Wiley, New York, pp 19.1.1–19.1.28Google Scholar
  38. 38.
    Sikriwal D, Seth D, Parveen S, Malik A, Broor S, Batra JK (2012) An insertion in loop L7 of human eosinophil-derived neurotoxin is crucial for its antiviral activity. J Cell Biochem 113(10):3104–3112PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  1. 1.Immunochemistry LaboratoryNational Institute of ImmunologyNew DelhiIndia
  2. 2.Centre for Molecular MedicineNational Institute of ImmunologyNew DelhiIndia

Personalised recommendations