Advertisement

Eosinophils pp 257-266 | Cite as

Eosinophils and Respiratory Virus Infection: A Dual-Standard Curve qRT-PCR-Based Method for Determining Virus Recovery from Mouse Lung Tissue

  • Caroline M. Percopo
  • Kimberly D. Dyer
  • Kendal A. Karpe
  • Joseph B. Domachowske
  • Helene F. RosenbergEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1178)

Abstract

Several lines of investigation have indicated a role for eosinophilic leukocytes in limiting virus infectivity and promoting virion clearance. We have established a respiratory virus infection model with pneumonia virus of mice (PVM; family Paramyxoviridae), a natural mouse pathogen that replicates the more severe forms of human disease elicited by the phylogenetically related respiratory syncytial virus (RSV). In this chapter, we present a rapid and highly reproducible dual-standard curve qRT-PCR based method for quantitative detection of PVM replication in mouse lung tissue. We have used this assay to evaluate eosinophil-mediated antiviral host defense in mouse models of cytokine and antigen-driven eosinophilic inflammation.

Key words

Inflammation Leukocyte Eosinophil Pneumonia virus of mice Polymerase chain reaction 

Notes

Acknowledgements

Support provided by NIAID Division of Intramural Research (AI000941 and AI000943) to HFR and Children’s Miracle Network of New York to JBD.

References

  1. 1.
    Edwards MR, Bartlett NW, Hussell T, Openshaw P, Johnston SL (2012) The microbiology of asthma. Nat Rev Microbiol 10: 459–471PubMedGoogle Scholar
  2. 2.
    Gibson PG (2009) Inflammatory phenotypes in adult asthma: clinical applications. Clin Respir J 3:198–206PubMedCrossRefGoogle Scholar
  3. 3.
    Lin TY, Poon AH, Hamid Q (2013) Asthma phenotypes and endotypes. Curr Opin Pulm Med 19:18–23PubMedCrossRefGoogle Scholar
  4. 4.
    Walsh GM (2013) Profile of reslizumab in eosinophilic disease and its potential in the treatment of poorly controlled eosinophilic asthma. Biologics 7:7–11PubMedCentralPubMedGoogle Scholar
  5. 5.
    Castro M, Mathur S, Hargreave F, Boulet LP, Xie F, Young J, Wilkins HJ, Henkel T, Nair P, Res-5-0010 Study Group (2010) Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo controlled study. Am J Respir Crit Care Med 184:1125–1132CrossRefGoogle Scholar
  6. 6.
    Thomas A, Busse W (2012) The evolving role of eosinophils in asthma. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, Inc., Waltham, MA, pp 448–461Google Scholar
  7. 7.
    Rosenberg HF, Dyer KD, Foster PS (2013) Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 13:9–22PubMedCrossRefGoogle Scholar
  8. 8.
    Domachowske JB, Dyer KD, Bonville CA, Rosenberg HF (1998) Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis 177: 1458–1464PubMedCrossRefGoogle Scholar
  9. 9.
    Adamko DJ, Yost BL, Gleich GJ, Fryer AD, Jacoby DB (1999) Ovalbumin sensitization changes the inflammatory response to subsequent parainfluenza infection. Eosinophils mediate airway hyperresponsiveness, m(2) muscarinic receptor dysfunction and antiviral effects. J Exp Med 190:1465–1478PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Phipps S, Lam CE, Mahalingam S, Newhouse M, Ramirez R, Rosenberg HF, Foster PS, Matthaei KI (2007) Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood 110:1578–1586PubMedCrossRefGoogle Scholar
  11. 11.
    Percopo CM, Dyer KD, Ochkur SI, Luo JL, Fischer ER, Lee JJ, Lee NA, Domachowske JB, Rosenberg HF (2014) Activated mouse eosinophils protect against lethal respiratory virus infection. Blood. 123:743–752Google Scholar
  12. 12.
    Bem RA, Domachowske JB, Rosenberg HF (2011) Animal models of human respiratory syncytial virus disease. Am J Physiol Lung Cell Mol Physiol 301:L148–L156PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Gabryszewski SJ, Bachar O, Dyer KD, Percopo CM, Killoran KE, Domachowske JB, Rosenberg HF (2011) Lactobacilllus-mediated priming of the respiratory mucosa protects against lethal pneumovirus infection. J Immunol 186:1151–1161PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Garcia-Crespo KE, Chan CC, Gabryszewski SJ, Percopo CM, Rigaux P, Dyer KD, Domachowske JB, Rosenberg HF (2013) Lactobacillus priming of the respiratory tract: heterologous immunity and protection against lethal pneumovirus infection. Antiviral Res 97:270–279PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Glineur SF, Renshaw RW, Percopo CM, Dyer KD, Dubovi EJ, Domachowske JB, Rosenberg HF (2013) Novel pneumoviruses (PnVs): evolution and inflammatory pathology. Virology 443:257–264PubMedCrossRefGoogle Scholar
  16. 16.
    Ochkur SI, Jacobsen EA, Protheroe CA, Biechele TL, Pero RS, McGarry MP, Wang H, O’Neill KR, Colbert DC, Colby TV, Shen H, Blackburn MR, Irvin CC, Lee JJ, Lee NA (2007) Co-expression of IL-5 and eotaxin-2 in mice creates an eosinophil-dependent model of respiratory inflammation with characteristics of severe asthma. J Immunol 178: 7879–7889PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Caroline M. Percopo
    • 1
  • Kimberly D. Dyer
    • 1
  • Kendal A. Karpe
    • 1
  • Joseph B. Domachowske
    • 2
  • Helene F. Rosenberg
    • 3
    Email author
  1. 1.Inflammation Immunobiology SectionNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUSA
  2. 2.Division of Infectious Diseases, Department of PediatricsSUNY Upstate Medical UniversitySyracuseUSA
  3. 3.Laboratory of Allergic Diseases, Inflammation Immunobiology SectionNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUSA

Personalised recommendations