Eosinophil Overview: Structure, Biological Properties, and Key Functions

  • Paige Lacy
  • Helene F. Rosenberg
  • Garry M. WalshEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1178)


The eosinophil is an enigmatic cell with a continuing ability to fascinate. A considerable history of research endeavor on eosinophil biology stretches from the present time back to the nineteenth century. Perhaps one of the most fascinating aspects of the eosinophil is how accumulating knowledge has changed the perception of its function from passive bystander, modulator of inflammation, to potent effector cell loaded with histotoxic substances through to more recent recognition that it can act as both a positive and negative regulator of complex events in both innate and adaptive immunity. This book consists of 26 chapters written by experts in the field of eosinophil biology that provide comprehensive and clearly written protocols for techniques designed to underpin research into the function of the eosinophil in health and disease.

Key words

Eosinophil Accumulation Apoptosis Degranulation Animal models 


  1. 1.
    Blanchard C, Rothenberg ME (2009) Biology of the eosinophil. Adv Immunol 101:81–121PubMedCrossRefGoogle Scholar
  2. 2.
    Walsh GM (2013) Profile of reslizumab in eosinophilic disease and its potential in the treatment of poorly controlled eosinophilic asthma. Biologics 7:7–11PubMedCentralPubMedGoogle Scholar
  3. 3.
    Bousquet J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I, Venge P, Ahlstedt S, Simony-Lafontaine J, Godard P et al (1990) Eosinophilic inflammation in asthma. N Engl J Med 323:1033–1039PubMedCrossRefGoogle Scholar
  4. 4.
    Nissim Ben Efraim AH, Levi-Schaffer F (2008) Tissue remodeling and angiogenesis in asthma: the role of the eosinophil. Ther Adv Respir Dis 2:163–171PubMedCrossRefGoogle Scholar
  5. 5.
    Akuthota P, Wang H, Weller PF (2010) Eosinophils as antigen presenting cells in allergic upper airway disease. Curr Opin Allergy Clin Immunol 10(1):14–19PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Walsh ER, August A (2010) Eosinophils and allergic airway disease: there is more to the story. Trends Immunol 31:39–44PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Wardlaw AJ (1999) Molecular basis for selective eosinophil trafficking in asthma: a mulitstep paradigm. J Allergy Clin Immunol 104:917–926PubMedCrossRefGoogle Scholar
  8. 8.
    Walsh GM (2010) Antagonism of eosinophil accumulation in asthma. Recent Pat Inflamm Allergy Drug Discov 4:210–213PubMedCrossRefGoogle Scholar
  9. 9.
    Matsumoto K, Bochner BS (2012) Adhesion molecules. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, NYGoogle Scholar
  10. 10.
    Robinson AJ, Kashanin D, O’Dowd F, Williams V, Walsh GM (2008) Montelukast inhibition of resting and GM-CSF-stimulated eosinophil adhesion to VCAM-1 under flow conditions appears independent of CysLT1 antagonism. J Leukoc Biol 83:1522–1529PubMedCrossRefGoogle Scholar
  11. 11.
    Wu P, Mitchell S, Walsh GM (2005) A new antihistamine levocetirizine inhibits eosinophil adhesion to vascular cell adhesion molecule-1 under flow conditions. Clin Exp Allergy 35:1073–1079PubMedCrossRefGoogle Scholar
  12. 12.
    Robinson AJ, Kashanin D, O’Dowd F, Fitzgerald K, Williams V, Walsh GM (2009) Fluvastain and lovastatin inhibit GM-CSF-stimulated human eosinophil adhesion to inter-cellular adhesion molecule-1 under flow conditions. Clin Exp Allergy 39:1866–1874PubMedCrossRefGoogle Scholar
  13. 13.
    Walsh GM (2013) Eosinophil apoptosis and clearance in asthma. J Cell Death 6:17–25CrossRefGoogle Scholar
  14. 14.
    Gounni AS, Gregory B, Nutku E, Aris F, Latifa K, Minshall E et al (2000) Interleukin-9 enhances interleukin-5 receptor expression, differentiation, and survival of human eosinophils. Blood 96:2163–2171PubMedGoogle Scholar
  15. 15.
    Luttmann W, Knoechel B, Foerster M, Matthys H, Virchow JC Jr, Kroegel C (1996) Activation of human eosinophils by IL-13. Induction of CD69 surface antigen, its relationship to messenger RNA expression, and promotion of cellular viability. J Immunol 157:1678–1683PubMedGoogle Scholar
  16. 16.
    Hoontrakoon R, Chu HW, Gardai SJ, Wenzel SE, McDonald P, Fadok VA, Henson PM, Bratton DL (2002) Interlukin-15 inhibits spontaneous apoptosis in human eosinophils via autocrine production of granulocyte macrophage-colony stimulating factor and nuclear factor-kappaB activation. Am J Respir Cell Mol Biol 26:404–412PubMedCrossRefGoogle Scholar
  17. 17.
    Leung DYM (1998) Molecular basis of allergic disease. Mol Genet Metab 63:177CrossRefGoogle Scholar
  18. 18.
    Cheung PF, Wong CK, Ip WK, Lam CW (2006) IL-25 regulates the expression of adhesion molecules on eosinophils: mechanism of eosinophilia in allergic inflammation. Allergy 61:878–885PubMedCrossRefGoogle Scholar
  19. 19.
    Suzukawa M, Koketsu R, Iikura M, Nakae S, Matsumoto K, Nagase H, Saito H, Matsushima K, Ohta K, Yamamoto K, Yamaguchi M (2008) Interleukin-33 enhances adhesion, CD11b expression and survival in human eosinophils. Lab Invest 88:1245–1253PubMedCrossRefGoogle Scholar
  20. 20.
    Wong C, Hu S, Cheung P, Lam C (2010) Thymic stromal lymphopoietin induces chemotactic and pro-survival effects in eosinophils: implications in allergic inflammation. Am J Respir Cell Mol Biol 43:305–315PubMedCrossRefGoogle Scholar
  21. 21.
    Anwar ARE, Moqbel R, Walsh GM, Kay AB, Wardlaw AJ (1993) Adhesion to fibronectin prolongs eosinophil survival. J Exp Med 177:839–843PubMedCrossRefGoogle Scholar
  22. 22.
    Walsh GM, Symon FA, Wardlaw AJ (1995) Human eosinophils preferentially survive on tissue fibronectin compared with plasma fibronectin. Clin Exp Allergy 25:1128–1136PubMedCrossRefGoogle Scholar
  23. 23.
    Rosenberg HF, Dyer KD, Foster PS (2013) Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 13:9–22PubMedCrossRefGoogle Scholar
  24. 24.
    Hogan SP, Rosenberg HF, Moqbel R et al (2008) Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 38:709–750PubMedCrossRefGoogle Scholar
  25. 25.
    Rothenberg ME, Hogan SP (2006) The eosinophil. Annu Rev Immunol 24:147–174PubMedCrossRefGoogle Scholar
  26. 26.
    Dvorak AM, Furitsu T, Letourneau L et al (1991) Mature eosinophils stimulated to develop in human cord blood mononuclear cell cultures supplemented with recombinant human interleukin-5. Part I. Piecemeal degranulation of specific granules and distribution of Charcot-Leyden crystal protein. Am J Pathol 138:69–82PubMedCentralPubMedGoogle Scholar
  27. 27.
    Melo RC, Spencer LA, Perez SA et al (2005) Human eosinophils secrete preformed, granule-stored interleukin-4 through distinct vesicular compartments. Traffic 6:1047–1057PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Melo RC, Weller PF (2010) Piecemeal degranulation in human eosinophils: a distinct secretion mechanism underlying inflammatory responses. Histol Histopathol 25:1341–1354PubMedCentralPubMedGoogle Scholar
  29. 29.
    Lacy P, Moqbel R (2000) Eosinophil cytokines. Chem Immunol 76:134–155PubMedCrossRefGoogle Scholar
  30. 30.
    Peters MS, Rodriguez M, Gleich GJ (1986) Localization of human eosinophil granule major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin by immunoelectron microscopy. Lab Invest 54:656–662PubMedGoogle Scholar
  31. 31.
    Lewis DM, Lewis JC, Loegering DA et al (1978) Localization of the guinea pig eosinophil major basic protein to the core of the granule. J Cell Biol 77:702–713PubMedCrossRefGoogle Scholar
  32. 32.
    Lacy P, Adamko DJ, Moqbel R (2013) The human eosinophil. In: Greer JP, Arber DA, Glader B, List AF, Means RT, Paraskevas F, Rogers GM, Foerster J (eds) Wintrobe's Clinical hematology. Lippincott Williams & WIlkins, Philadelphia, PA, pp 214–235Google Scholar
  33. 33.
    Lacy P, Moqbel R (2013) Signaling and degranulation. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, NY, pp 206–219Google Scholar
  34. 34.
    Lacy P, Stow JL (2011) Cytokine release from innate immune cells: association with diverse membrane trafficking pathways. Blood 118:9–18PubMedCrossRefGoogle Scholar
  35. 35.
    Erjefalt JS, Persson CG (2000) New aspects of degranulation and fates of airway mucosal eosinophils. Am J Respir Crit Care Med 161:2074–2085PubMedCrossRefGoogle Scholar
  36. 36.
    Driss V, Legrand F, Capron M (2013) Eosinophil receptor profile. In: Lee JJ, Rosenberg HF (eds) Eosinophils in heatlh and disease. Elsevier, New York, NY, pp 30–38Google Scholar
  37. 37.
    Kita H (2013) Antifungal immunity by eosinophils: mechanisms and implications in human diseases. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, NY, pp 291–299Google Scholar
  38. 38.
    Adamko DJ, Wu Y, Gleich GJ et al (2004) The induction of eosinophil peroxidase release: improved methods of measurement and stimulation. J Immunol Methods 291:101–108PubMedCrossRefGoogle Scholar
  39. 39.
    Melo RC, Perez SA, Spencer LA et al (2005) Intragranular vesiculotubular compartments are involved in piecemeal degranulation by activated human eosinophils. Traffic 6:866–879PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Lacy P, Mahmudi-Azer S, Bablitz B et al (1999) Rapid mobilization of intracellularly stored RANTES in response to interferon-γ in human eosinophils. Blood 94:23–32PubMedGoogle Scholar
  41. 41.
    Spencer LA, Melo RC, Perez SA et al (2006) Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proc Natl Acad Sci U S A 103:3333–3338PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Lacy P, Willetts L, Kim JD et al (2011) Agonist activation of F-actin-mediated eosinophil shape change and mediator release is dependent on Rac2. Int Arch Allergy Immunol 156:137–147PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Lacy P, Logan MR, Bablitz B et al (2001) Fusion protein vesicle-associated membrane protein 2 is implicated in IFNγ-induced piecemeal degranulation in human eosinophils from atopic individuals. J Allergy Clin Immunol 107:671–678PubMedCrossRefGoogle Scholar
  44. 44.
    Logan MR, Lacy P, Bablitz B et al (2002) Expression of eosinophil target SNAREs as potential cognate receptors for vesicle-associated membrane protein-2 in exocytosis. J Allergy Clin Immunol 109:299–306PubMedCrossRefGoogle Scholar
  45. 45.
    Kim JD, Willetts L, Ochkur S et al (2013) An essential role for Rab27a GTPase in eosinophil exocytosis. J Leukoc Biol 94:1265–1274PubMedCrossRefGoogle Scholar
  46. 46.
    McLaren DJ, Ramalho-Pinto FJ, Smithers SR (1978) Ultrastructural evidence for complement and antibody-dependent damage to schistosomula of Schistosoma mansoni by rat eosinophils in vitro. Parasitology 77:313–324PubMedCrossRefGoogle Scholar
  47. 47.
    Foster PS, Rosenberg HF, Asquith KL et al (2008) Targeting eosinophils in asthma. Curr Mol Med 8:585–590PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Gentil K, Hoerauf A, Layland LE (2013) Eosinophil-mediated responses toward helminths. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, NY, pp 303–312Google Scholar
  49. 49.
    Nutman TB (2013) Immune responses in helminth infections. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, NY, pp 312–320Google Scholar
  50. 50.
    Rosenberg HF, Dyer KD, Domachowske JB (2013) Interactions of eosinophils with respiratory virus pathogens. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, NY, pp 281–290Google Scholar
  51. 51.
    Swartz JM, Dyer KD, Cheever AW et al (2006) Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood 108:2420–2427PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Percopo CM, Dyer KD, Ochkur SI et al (2014) Activated mouse eosinophils protect against lethal respiratory virus infection. Blood 123(5):743–752PubMedCrossRefGoogle Scholar
  53. 53.
    Evans RL, Nials AT, Knowles RG, Kidd EJ, Ford WR, Broadley KJ (2012) A comparison of antiasthma drugs between acute and chronic ovalbumin-challenged guinea-pig models of asthma. Pulm Pharmacol Ther 25:453–464PubMedCrossRefGoogle Scholar
  54. 54.
    Lee JJ, Jacobsen EA, Ochkur SI, McGarry MP, Condjella RM, Doyle AD, Luo H, Zellner KR, Protheroe CA, Willetts L, Lesuer WE, Colbert DC, Helmers RA, Lacy P, Moqbel R, Lee NA (2012) Human versus mouse eosinophils: “that which we call an eosinophil, by any other name would stain as red”. J Allergy Clin Immunol 130:572–584PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Lee NA (2012) Mouse models manipulating eosinophilopoiesis. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, Waltham, MA, pp 111–120Google Scholar
  56. 56.
    Dent LA, Strath M, Mellor AL, Sanderson CJ (1990) Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med 172:1425–1431PubMedCrossRefGoogle Scholar
  57. 57.
    Macias MP, Fitzpatrick LA, Brenneise I, McGarry MP, Lee JJ, Lee NA (2001) Expression of IL-5 alters bone metabolism and induces ossification of the spleen in transgenic mice. J Clin Invest 107:949–959PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Ochkur SI, Jacobsen EA, Protheroe CA, Biechele TL, Pero RS, McGarry MP, Wang H, O'Neill KR, Colbert DC, Colby TV, Shen H, Blackburn MR, Irvin CC, Lee JJ, Lee NA (2007) Co-expression of IL-5 and eotaxin-2 in mice creates an eosinophil-dependent model of respiratory inflammation with characteristics of severe asthma. J Immunol 78:7879–7889CrossRefGoogle Scholar
  59. 59.
    Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA, Dai WJ, Ovington KS, Behm CA, Köhler G, Young IG, Matthaei KI (1996) IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4:15–24PubMedCrossRefGoogle Scholar
  60. 60.
    Yoshida T, Ikuta K, Sugaya H, Maki K, Takagi M, Kanazawa H, Sunaga S, Kinashi T, Yoshimura K, Miyazaki J, Takaki S, Takatsu K (1996) Defective B-1 cell development and impaired immunitiy against Angiostrongylus cantonensis in IL-5R alpha-deficient mice. Immunity 4:483–494PubMedCrossRefGoogle Scholar
  61. 61.
    Yu C, Cantor AB, Yang H, Browne C, Wells RA, Fujiwara Y, Orkin SH (2002) Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med 195:1387–1395PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Nei Y, Obata-Ninomiya K, Tsutsui H, Ishiwata K, Miyasaka M, Matsumoto K, Nakae S, Kanuka H, Inase N, Karasuyama H (2013) GATA-1 regulates the generation and function of basophils. Proc Natl Acad Sci U S A 110:18620–18625PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP, O'Neill KR, Protheroe C, Pero R, Nguyen T, Cormier SA, Lenkiewicz E, Colbert D, Rinaldi L, Ackerman SJ, Irvin CG, Lee NA (2004) Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305:1773–1776PubMedCrossRefGoogle Scholar
  64. 64.
    Jacobsen EA, Lesuer WE, Willetts L, Zellner KR, Mazzolini K, Antonios N, Beck B, Protheroe C, Ochkur SI, Colbert D, Lacy P, Moqbel R, Appleton J, Lee NA, Lee JJ (2014) Eosinophil activities modulate the immune/inflammatory character of allergic respiratory responses in mice. Allergy 69(3):315–327. doi: 10.1111/all.12321 PubMedCrossRefGoogle Scholar
  65. 65.
    Doyle AD, Jacobsen EA, Ochkur SI, McGarry MP, Shim KG, Nguyen DT, Protheroe C, Colbert D, Kloeber J, Neely J, Shim KP, Dyer KD, Rosenberg HF, Lee JJ, Lee NA (2013) Expression of the secondary granule proteins major basic protein 1 (MBP-1) and eosinophil peroxidase (EPX) is required for eosinophilopoiesis in mice. Blood 122:781–790PubMedCrossRefGoogle Scholar
  66. 66.
    Doyle AD, Jacobsen EA, Ochkur SI, Willetts L, Shim K, Neely J, Kloeber J, Lesuer WE, Pero RS, Lacy P, Moqbel R, Lee NA, Lee JJ (2013) Homologous recombination into the eosinophil peroxidase locus generates a strain of mice expressing Cre recombinase exclusively in eosinophils. J Leukoc Biol 94:17–24PubMedCrossRefGoogle Scholar
  67. 67.
    Rosenberg HF (2013) Mouse eosinophils expressing Cre recombinase: endless “flox”ibilities. J Leukoc Biol 94:3–4PubMedCrossRefGoogle Scholar
  68. 68.
    Lee JJ, Jacobsen EA, McGarry MP, Schleimer RP, Lee NA (2010) Eosinophils in health and disease: the LIAR hypothesis. Clin Exp Allergy 40:563–575PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Akuthota P, Wang HB, Spencer LA, Weller PF (2008) Immunoregulatory roles of eosinophils: a new look at a familiar cell. Clin Exp Allergy 38:1254–1263PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Wang HB, Ghiran I, Matthaei K, Weller PF (2007) Airway eosinophils: allergic inflammation recruited professional antigen presenting cells. J Immunol 179:7585–7592PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Wang HB, Weller PF (2008) Pivotal Advance: eosinophils mediate early alum adjuvant elicited B cell priming and IgM production. J Leukoc Biol 83:817–821PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Chu VT, Fröhlich A, Steinhauser G, Scheel T, Roch T, Fillatreau S, Lee JJ, Löhning M, Berek C (2011) Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol 12:151–159PubMedCrossRefGoogle Scholar
  73. 73.
    Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, Chawla A, Locksley RM (2011) Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332:243–247PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Yang D, Chen Q, Su SB, Zhang P, Kurosaka K, Caspi RR, Michalek SM, Rosenberg HF, Zhang N, Oppenheim JJ (2008) Eosinophil-derived neurotoxin acts as an alarmin to activated the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med 205:79–90PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Minai-Fleminger Y, Levi-Schaffer F (2009) Mast cells and eosinophils: the two key effector cells in allergic inflammation. Inflamm Res 58:631–638PubMedCrossRefGoogle Scholar
  76. 76.
    Haskell MD, Moy JN, Gleich GJ, Thomas LL (1995) Analysis of signaling events associated with activation of neutrophil superoxide anion production by eosinophil granule major basic protein. Blood 86:4627–4637PubMedGoogle Scholar
  77. 77.
    Klion AD, Nutman TB (2004) The role of eosinophils in host defense against helminth parasites. J Allergy Clin Immunol 113:30–37PubMedCrossRefGoogle Scholar
  78. 78.
    Fabre V, Beiting DP, Bliss SK, Gebreselassie NG, Gagliardo LF, Lee NA, Lee JJ, Appleton JA (2009) Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol 182:1577–1583PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Gebreselassie NG, Moorhead AR, Fabre V, Gagliardo LF, Lee NA, Lee JJ, Appleton JA (2012) Eosinophils preserve parasitic nematode larvae by regulating local immunity. J Immunol 188:417–425PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Rosenberg HF, Dyer KD, Domachowske JB (2009) Respiratory viruses and eosinophils: exploring the connections. Antiviral Res 83:1–9PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ (1989) Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol 142:4428–4434PubMedGoogle Scholar
  82. 82.
    Torrent M, Navarro S, Moussaoui M, Nogues MV, Boix E (2008) Eosinophil cationic protein high affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans. Biochemistry 47:3544–3555PubMedCrossRefGoogle Scholar
  83. 83.
    Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, Simon HU (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14:949–953PubMedCrossRefGoogle Scholar
  84. 84.
    Linch SN, Danielson ET, Kelly AM, Tamakawa RA, Lee JJ, Gold JA (2012) Interleukin 5 is protective during sepsis in an eosinophil-independent manner. Am J Respir Crit Care Med 186:246–254PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Herbst T, Sichelstiel A, Schar C, Yadava K, Burki K, Cahenzli J, McCoy K, Marsland BJ, Harris NL (2011) Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am J Respir Crit Care Med 184:198–205PubMedCrossRefGoogle Scholar
  86. 86.
    Bisgaard H, Li N, Bonnelykke K, Chawes BL, Skov T, Paludan-Muller G, Stokholm J, Smith B, Krogfelt KA (2011) Reduced diversity of the intestinal microbiotal during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 128:646–652PubMedCrossRefGoogle Scholar
  87. 87.
    Raap U, Wardlaw AJ (2008) A new paradigm of eosinophil granulocytes: neuroimmune interactions. Exp Dermatol 17(9):731–738PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Paige Lacy
    • 1
  • Helene F. Rosenberg
    • 2
  • Garry M. Walsh
    • 3
    Email author
  1. 1.Pulmonary Research Group, Department of MedicineUniversity of AlbertaEdmontonCanada
  2. 2.Laboratory of Allergic Diseases, Inflammation Immunobiology SectionNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUSA
  3. 3.Division of Applied MedicineSchool of Medicine & Dentistry, Institute of Medical Sciences, University of AberdeenAberdeenUK

Personalised recommendations