A High-Throughput MicroRNA Expression Profiling System

  • Yanwen Guo
  • Stephen Mastriano
  • Jun LuEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1176)


As small noncoding RNAs, microRNAs (miRNAs) regulate diverse biological functions, including physiological and pathological processes. The expression and deregulation of miRNA levels contain rich information with diagnostic and prognostic relevance and can reflect pharmacological responses. The increasing interest in miRNA-related research demands global miRNA expression profiling on large numbers of samples. We describe here a robust protocol that supports high-throughput sample labeling and detection on hundreds of samples simultaneously. This method employs 96-well-based miRNA capturing from total RNA samples and on-site biochemical reactions, coupled with bead-based detection in 96-well format for hundreds of miRNAs per sample. With low-cost, high-throughput, high detection specificity, and flexibility to profile both small and large numbers of samples, this protocol can be adapted in a wide range of laboratory settings.

Key words

Noncoding RNAs miRNAs High-throughput miRNA labeling miRNA capture 



This work was supported in part by NIH grants R01CA149109 and R01GM099811 and Connecticut Stem Cell Research Fund (09SCBYALE27). We thank Eric Miska, Ezequiel Alvarez-Saavedra, Justin Lamb, David Peck, Hao Zhang, and Judy Wang for help during the process of establishing this protocol.


  1. 1.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355PubMedCrossRefGoogle Scholar
  3. 3.
    Garzon R, Croce CM (2008) MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 15:352–358PubMedCrossRefGoogle Scholar
  4. 4.
    Farazi TA, Spitzer JI, Morozov P et al (2011) miRNAs in human cancer. J Pathol 223:102–115PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedCrossRefGoogle Scholar
  6. 6.
    Wang Y, Juranek S, Li H et al (2008) Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456:921–926PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    D’Andrade PN, Fulmer-Smentek S (2012) Agilent microRNA microarray profiling system. Methods Mol Biol 822:85–102PubMedCrossRefGoogle Scholar
  8. 8.
    Lu J, Guo S, Ebert BL et al (2008) MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 14:843–853PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Li Z, Lu J, Sun M et al (2008) Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci U S A 105:15535–15540PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Olson P, Lu J, Zhang H et al (2009) MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 23:2152–2165PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Mi S, Lu J, Sun M et al (2007) MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci U S A 104:19971–19976PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Adams BD, Guo S, Bai H et al (2012) An in vivo functional screen uncovers miR-150-mediated regulation of hematopoietic injury response. Cell Rep 2:1048–1060PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Guo S, Bai H, Megyola CM et al (2012) Complex oncogene dependence in microRNA-125a-induced myeloproliferative neoplasms. Proc Natl Acad Sci U S A 109:16636–16641PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Guo S, Lu J, Schlanger R et al (2010) MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci U S A 107:14229–14234PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Hafner M, Landgraf P, Ludwig J et al (2008) Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44:3–12PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Vigneault F, Sismour AM, Church GM (2008) Efficient microRNA capture and bar-coding via enzymatic oligonucleotide adenylation. Nat Methods 5:777–779PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Genetics, Yale Stem Cell CenterYale UniversityNew HavenUSA
  2. 2.Yale Cancer CenterYale UniversityNew HavenUSA

Personalised recommendations