Advertisement

Zebrafish as a Platform to Study Tumor Progression

  • Corrie A. Painter
  • Craig J. Ceol
Part of the Methods in Molecular Biology book series (MIMB, volume 1176)

Abstract

The zebrafish has emerged as a powerful model system to study human diseases, including a variety of neoplasms. Principal components that have contributed to the rise in use of this vertebrate model system are its high fecundity, ease of genetic manipulation, and low cost of maintenance. Vital imaging of the zebrafish is possible from the transparent embryonic stage through adulthood, the latter enabled by a number of mutant lines that ablate pigmentation. As a result, high-resolution analyses of tumor progression can be accomplished in vivo. Straightforward transgenesis of zebrafish has been employed to develop numerous tumor models that recapitulate many aspects of human neoplastic disease, both in terms of pathologic and molecular conservation. The small size of zebrafish embryos has enabled screens for novel chemotherapeutic agents. Its facile genetics have been exploited in studies that extend beyond modeling cancer to investigations that define new cancer genes and mechanisms of cancer progression. Together, these attributes have established the zebrafish as a robust and versatile model system for investigating cancer. In this chapter we describe methods that are used to study a gene’s impact on melanoma progression. We detail methods for making transgenic animals and screening for tumor onset as well as methods to investigate tumor invasion and propagation.

Key words

Danio rerio Zebrafish Melanoma Melanocyte BRAF p53 Tumor progression 

Notes

Acknowledgments

The authors thank Dr. Yariv Houvras for his contributions in developing miniCoopR-based screening. This work was supported by NIH Pathway to Independence (R00AR056899-03) and American Cancer Society Research Scholar (RSG-12-150-01-DDC) awards to C.C. and a Cancer Research Institute Irvington Fellowship to C.A.P.

References

  1. 1.
    Spitsbergen JM, Tsai HW, Reddy A, Miller T, Arbogast D, Hendricks JD, Bailey GS (2000) Neoplasia in zebrafish (Danio rerio) treated with N-methyl-N′-nitro-N-nitrosoguanidine by three exposure routes at different developmental stages. Toxicol Pathol 28(5):716–725PubMedCrossRefGoogle Scholar
  2. 2.
    Spitsbergen JM, Tsai HW, Reddy A, Miller T, Arbogast D, Hendricks JD, Bailey GS (2000) Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz[a]anthracene by two exposure routes at different developmental stages. Toxicol Pathol 28(5):705–715PubMedCrossRefGoogle Scholar
  3. 3.
    Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP, Lin S, Prochownik E, Trede NS, Zon LI, Look AT (2003) Myc-induced T cell leukemia in transgenic zebrafish. Science 299(5608):887–890. doi: 10.1126/science.1080280, 299/5608/887 [pii]PubMedCrossRefGoogle Scholar
  4. 4.
    Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD, Berghmans S, Mayhall EA, Traver D, Fletcher CD, Aster JC, Granter SR, Look AT, Lee C, Fisher DE, Zon LI (2005) BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15(3):249–254. doi: 10.1016/j.cub.2005.01.031, S0960982205000916 [pii]PubMedCrossRefGoogle Scholar
  5. 5.
    Nguyen AT, Emelyanov A, Koh CH, Spitsbergen JM, Parinov S, Gong Z (2012) An inducible kras(V12) transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Dis Model Mech 5(1):63–72. doi: 10.1242/dmm.008367 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Li Z, Huang X, Zhan H, Zeng Z, Li C, Spitsbergen JM, Meierjohann S, Schartl M, Gong Z (2012) Inducible and repressable oncogene-addicted hepatocellular carcinoma in Tet-on xmrk transgenic zebrafish. J Hepatol 56(2):419–425. doi: 10.1016/j.jhep.2011.07.025 PubMedCrossRefGoogle Scholar
  7. 7.
    Haramis AP, Hurlstone A, van der Velden Y, Begthel H, van den Born M, Offerhaus GJ, Clevers HC (2006) Adenomatous polyposis coli-deficient zebrafish are susceptible to digestive tract neoplasia. EMBO Rep 7(4):444–449. doi: 10.1038/sj.embor.7400638 PubMedCentralPubMedGoogle Scholar
  8. 8.
    Park SW, Davison JM, Rhee J, Hruban RH, Maitra A, Leach SD (2008) Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish exocrine pancreas. Gastroenterology 134(7):2080–2090. doi: 10.1053/j.gastro.2008.02.084 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Gill JA, Lowe L, Nguyen J, Liu PP, Blake T, Venkatesh B, Aplan PD (2010) Enforced expression of Simian virus 40 large T-antigen leads to testicular germ cell tumors in zebrafish. Zebrafish 7(4):333–341. doi: 10.1089/zeb.2010.0663 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Neumann JC, Chandler GL, Damoulis VA, Fustino NJ, Lillard K, Looijenga L, Margraf L, Rakheja D, Amatruda JF (2011) Mutation in the type IB bone morphogenetic protein receptor Alk6b impairs germ-cell differentiation and causes germ-cell tumors in zebrafish. Proc Natl Acad Sci U S A 108(32):13153–13158. doi: 10.1073/pnas.1102311108 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Choorapoikayil S, Kuiper RV, de Bruin A, den Hertog J (2012) Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma. Dis Model Mech 5(2):241–247. doi: 10.1242/dmm.008326 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Gutierrez A, Snyder EL, Marino-Enriquez A, Zhang YX, Sioletic S, Kozakewich E, Grebliunaite R, Ou WB, Sicinska E, Raut CP, Demetri GD, Perez-Atayde AR, Wagner AJ, Fletcher JA, Fletcher CD, Look AT (2011) Aberrant AKT activation drives well-differentiated liposarcoma. Proc Natl Acad Sci U S A 108(39):16386–16391. doi: 10.1073/pnas.1106127108 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Langenau DM, Keefe MD, Storer NY, Guyon JR, Kutok JL, Le X, Goessling W, Neuberg DS, Kunkel LM, Zon LI (2007) Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev 21(11):1382–1395. doi: 10.1101/gad.1545007, gad.1545007 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Kawakami K, Shima A, Kawakami N (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97(21):11403–11408. doi: 10.1073/pnas.97.21.11403 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Peterson RT, Link BA, Dowling JE, Schreiber SL (2000) Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci U S A 97(24):12965–12969. doi: 10.1073/pnas.97.24.12965, 97/24/12965 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    White RM, Cech J, Ratanasirintrawoot S, Lin CY, Rahl PB, Burke CJ, Langdon E, Tomlinson ML, Mosher J, Kaufman C, Chen F, Long HK, Kramer M, Datta S, Neuberg D, Granter S, Young RA, Morrison S, Wheeler GN, Zon LI (2011) DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 471(7339):518–522. doi: 10.1038/nature09882, nature09882 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Lister JA, Robertson CP, Lepage T, Johnson SL, Raible DW (1999) nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126(17):3757–3767PubMedGoogle Scholar
  18. 18.
    Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, Parant JM, Yost HJ, Kanki JP, Chien CB (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236(11):3088–3099. doi: 10.1002/dvdy.21343 PubMedCrossRefGoogle Scholar
  19. 19.
    Villefranc JA, Amigo J, Lawson ND (2007) Gateway compatible vectors for analysis of gene function in the zebrafish. Dev Dyn 236(11):3077–3087. doi: 10.1002/dvdy.21354 PubMedCrossRefGoogle Scholar
  20. 20.
    Sauter ER, Yeo UC, von Stemm A, Zhu W, Litwin S, Tichansky DS, Pistritto G, Nesbit M, Pinkel D, Herlyn M, Bastian BC (2002) Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res 62(11):3200–3206PubMedGoogle Scholar
  21. 21.
    Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Brocker EB, LeBoit PE, Pinkel D, Bastian BC (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353(20):2135–2147. doi: 10.1056/NEJMoa050092, 353/20/2135 [pii]PubMedCrossRefGoogle Scholar
  22. 22.
    Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36PubMedGoogle Scholar
  23. 23.
    de Jong JL, Zon LI (2005) Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu Rev Genet 39:481–501. doi: 10.1146/annurev.genet.39.073003.095931 PubMedCrossRefGoogle Scholar
  24. 24.
    Iyengar S, Houvras Y, Ceol CJ (2012) Screening for melanoma modifiers using a zebrafish autochthonous tumor model. J Vis Exp 69:e50086. doi: 10.3791/50086 PubMedGoogle Scholar
  25. 25.
    Ceol CJ, Houvras Y, Jane-Valbuena J, Bilodeau S, Orlando DA, Battisti V, Fritsch L, Lin WM, Hollmann TJ, Ferre F, Bourque C, Burke CJ, Turner L, Uong A, Johnson LA, Beroukhim R, Mermel CH, Loda M, Ait-Si-Ali S, Garraway LA, Young RA, Zon LI (2011) The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471(7339):513–517. doi: 10.1038/nature09806, nature09806 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Lian CG, Xu Y, Ceol C, Wu F, Larson A, Dresser K, Xu W, Tan L, Hu Y, Zhan Q, Lee CW, Hu D, Lian BQ, Kleffel S, Yang Y, Neiswender J, Khorasani AJ, Fang R, Lezcano C, Duncan LM, Scolyer RA, Thompson JF, Kakavand H, Houvras Y, Zon LI, Mihm MC Jr, Kaiser UB, Schatton T, Woda BA, Murphy GF, Shi YG (2012) Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150(6):1135–1146. doi: 10.1016/j.cell.2012.07.033 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Program in Molecular Medicine, Department of Cancer Biology, Program in Cell and Developmental DynamicsUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations