Skip to main content

Genome-Wide Mapping of RNA Pol-II Promoter Usage in Mouse Tissues by ChIP-Seq

  • Protocol
  • First Online:
Cancer Genomics and Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1176))

Abstract

Chromatin immunoprecipitation (ChIP), using antibody against RNA Pol-II, followed by massive parallel sequencing (ChIP-seq) are invaluable techniques for genome-wide identification of alternative promoters and their patterns of use in different tissues, cell types, and/or developmental stages. However, the identification of promoters cannot be performed solely based on the presence of Pol-II enrichment on a genomic location because of its enrichment throughout the transcribed genomic region and lack of highly specific antibodies that can distinguish promoter-bound Pol-II from elongating Pol-II. In order to overcome this limitation, we developed a combined Pol-II ChIP-seq and bioinformatics promoter prediction approach to identify promoter regions and their activity in different mouse tissues. Here, we describe the integrative approach to identify alternative promoters in the mouse genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davuluri RV, Suzuki Y, Sugano S, Plass C, Huang TH (2008) The functional consequences of alternative promoter use in mammalian genomes. Trends Genet 24:167–177

    Article  CAS  PubMed  Google Scholar 

  2. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Pal S, Gupta R, Davuluri RV (2012) Alternative transcription and alternative splicing in cancer. Pharmacol Ther 136:283–294

    Google Scholar 

  4. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657

    Article  CAS  PubMed  Google Scholar 

  5. Lee TI, Johnstone SE, Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1:729–748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Sun H, Wu J, Wickramasinghe P, Pal S, Gupta R, Bhattacharyya A, Agosto-Perez FJ, Showe LC, Huang TH, Davuluri RV (2011) Genome-wide mapping of RNA Pol-II promoter usage in mouse tissues by ChIP-seq. Nucleic Acids Res 39:190–201

    Article  PubMed Central  PubMed  Google Scholar 

  7. Pal S, Gupta R, Kim H, Wickramasinghe P, Baubet V, Showe LC, Dahmane N, Davuluri RV (2011) Alternative transcription exceeds alternative splicing in generating the transcriptome diversity of cerebellar development. Genome Res 21:1260–1272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Zhang ZD, Rozowsky J, Snyder M, Chang J, Gerstein M (2008) Modeling ChIP sequencing in silico with applications. PLoS Comput Biol 4:e1000158

    Article  PubMed Central  PubMed  Google Scholar 

  9. Shen R, Mo Q, Schultz N, Seshan VE, Olshen AB, Huse J, Ladanyi M, Sander C (2012) Integrative subtype discovery in glioblastoma using iCluster. PLoS One 7:e35236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kuan PF, Chung DJ, Pan GJ, Thomson JA, Stewart R, Keles S (2011) A statistical framework for the analysis of ChIP-Seq data. J Am Stat Assoc 106:891–903

    Article  CAS  Google Scholar 

  11. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  PubMed Central  PubMed  Google Scholar 

  12. Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S, Myers RM, Sidow A (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods 5:829–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gupta R, Wikramasinghe P, Bhattacharyya A, Perez FA, Pal S, Davuluri RV (2010) Annotation of gene promoters by integrative data-mining of ChIP-seq Pol-II enrichment data. BMC Bioinformatics 11(Suppl 1):S65

    Article  PubMed Central  PubMed  Google Scholar 

  14. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gupta R, Bhattacharyya A, Agosto-Perez FJ, Wickramasinghe P, Davuluri RV (2011) MPromDb update 2010: an integrated resource for annotation and visualization of mammalian gene promoters and ChIP-seq experimental data. Nucleic Acids Res 39:D92–D97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed Central  PubMed  Google Scholar 

  17. David M, Dzamba M, Lister D, Ilie L, Brudno M (2011) SHRiMP2: sensitive yet practical SHort Read Mapping. Bioinformatics 27:1011–1012

    Article  CAS  PubMed  Google Scholar 

  18. Lunter G, Goodson M (2011) Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res 21:936–939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramana V. Davuluri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pal, S., Gupta, R., Davuluri, R.V. (2014). Genome-Wide Mapping of RNA Pol-II Promoter Usage in Mouse Tissues by ChIP-Seq. In: Wajapeyee, N. (eds) Cancer Genomics and Proteomics. Methods in Molecular Biology, vol 1176. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0992-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0992-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0991-9

  • Online ISBN: 978-1-4939-0992-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics