Skip to main content

Pharmacogenetics of the G Protein-Coupled Receptors

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1175))

Abstract

Pharmacogenetics investigates the influence of genetic variants on physiological phenotypes related to drug response and disease, while pharmacogenomics takes a genome-wide approach to advancing this knowledge. Both play an important role in identifying responders and nonresponders to medication, avoiding adverse drug reactions, and optimizing drug dose for the individual. G protein-coupled receptors (GPCRs) are the primary target of therapeutic drugs and have been the focus of these studies. With the advance of genomic technologies, there has been a substantial increase in the inventory of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms and insertion or deletions that have potential to alter GPCR expression of function. In vivo and in vitro studies have determined functional roles for many GPCR variants, but genetic association studies that define the physiological impact of the majority of these common variants are still limited. Despite the breadth of pharmacogenetic data available, GPCR variants have not been included in drug labeling and are only occasionally considered in optimizing clinical use of GPCR-targeted agents. In this chapter, pharmacogenetic and genomic studies on GPCR variants are reviewed with respect to a subset of GPCR systems, including the adrenergic, calcium sensing, cysteinyl leukotriene, cannabinoid CB1 and CB2 receptors, and the de-orphanized receptors such as GPR55. The nature of the disruption to receptor function is discussed with respect to regulation of gene expression, expression on the cell surface (affected by receptor trafficking, dimerization, desensitization/downregulation), or perturbation of receptor function (altered ligand binding, G protein coupling, constitutive activity). The large body of experimental data generated on structure and function relationships and receptor-ligand interactions are being harnessed for the in silico functional prediction of naturally occurring GPCR variants. We provide information on online resources dedicated to GPCRs and present applications of publically available computational tools for pharmacogenetic studies of GPCRs. As the breadth of GPCR pharmacogenomic data becomes clearer, the opportunity for routine assessment of GPCR variants to predict disease risk, drug response, and potential adverse drug effects will become possible.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rana BK, Shiina T, Insel PA (2001) Genetic variations and polymorphisms of G protein-coupled receptors: functional and therapeutic implications. Annu Rev Pharmacol Toxicol 41:593–624

    CAS  PubMed  Google Scholar 

  2. Lefkowitz RJ (2004) Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci 25:413–422

    CAS  PubMed  Google Scholar 

  3. Silber BM (2001) Pharmacogenomics, biomarkers, and the promise of personalized medicine. In: Kalow W, Meyer UA, Tyndale R (eds) Pharmacogenomics. Dekker, New York, pp 10–25

    Google Scholar 

  4. Xing Q, Qian X, Li H et al (2007) The relationship between the therapeutic response to risperidone and the dopamine D2 receptor polymorphism in Chinese schizophrenia patients. Int J Neuropsychopharmacol 10:631–637

    CAS  PubMed  Google Scholar 

  5. Ikeda M, Yamanouchi Y, Kinoshita Y et al (2008) Variants of dopamine and serotonin candidate genes as predictors of response to risperidone treatment in first-episode schizophrenia. Pharmacogenomics 9:1437–1443

    CAS  PubMed  Google Scholar 

  6. Milligan G (2002) Strategies to identify ligands for orphan G-protein-coupled receptors. Biochem Soc Trans 30:789–793

    CAS  PubMed  Google Scholar 

  7. Mannstadt M, Bravenboer B, Chitturi S et al (2013) Germline mutations affecting Gα11 in hypoparathyroidism. N Engl J Med 368:2532–2534

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Birnbaumer M (1995) Mutations and diseases of G-protein coupled receptors. J Recept Signal Transduct Res 15:131–160

    CAS  PubMed  Google Scholar 

  9. Raymond JR (1994) Hereditary and acquired defects in signaling through the hormone-receptor-G protein complex. Am J Physiol 266:163–174

    Google Scholar 

  10. Thompson MD, Capra V, Takasaki J et al (2007) A functional G300S variant of the cysteinyl leukotriene 1 receptor is associated with atopy in a Tristan da Cunha isolate. Pharmacogenet Genomics 17:539–549

    CAS  PubMed  Google Scholar 

  11. Thompson MD, Gravesandeg KSV, Galczenski H et al (2003) A cysteinyl leukotriene 2 receptor variant is associated with atopy in the population of Tristan da Cunha. Pharmacogenetics 13:641–649

    CAS  PubMed  Google Scholar 

  12. Rana BK, Bourne PE, Insel PA (2012) Receptor databases and computational websites for ligand binding. Methods Mol Biol 897:1–13

    CAS  PubMed  Google Scholar 

  13. Kazius J, Wurdinger K, van Iterson M et al (2008) GPCR NaVa database: natural variants in human G protein-coupled receptors. Hum Mutat 29:39–44

    CAS  PubMed  Google Scholar 

  14. Vroling B, Sanders M, Baakman C et al (2011) GPCRDB: information system for G protein-coupled receptors. Nucleic Acids Res 39(Database issue):D309–D319. doi:10.1093/nar/gkq1009

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Cole DEC, Peltekova VD, Rubin LA et al (1999) A986S polymorphism of the calcium-sensing receptor and circulating calcium concentrations. Lancet 353:112–115

    CAS  PubMed  Google Scholar 

  16. Cole DEC, Vieth R, Trang HM, Wong BYL, Hendy GN, Rubin LA (2001) Association between total serum calcium and the A986S polymorphism of the calcium-sensing receptor gene. Mol Genet Metab 72:168–174

    CAS  PubMed  Google Scholar 

  17. Scillitani A, Guarnieri V, De Geronimo S et al (2004) Blood ionized calcium is associated with clustered polymorphisms in the carboxyl-terminal tail of the calcium-sensing receptor. J Clin Endocrinol Metab 89:5634–5638

    CAS  PubMed  Google Scholar 

  18. Lorentzon M, Lorentzon R, Lerner UH et al (2001) Calcium sensing receptor gene polymorphism, circulating calcium concentrations and bone mineral density in healthy adolescent girls. Eur J Endocrinol 144:257–261

    CAS  PubMed  Google Scholar 

  19. Miedlich S, Lamesch P, Mueller A et al (2001) Frequency of the calcium-sensing receptor variant A986S in patients with primary hyperparathyroidism. Eur J Endocrinol 145:421–427

    CAS  PubMed  Google Scholar 

  20. Donath J, Speer G, Poor G et al (2004) Vitamin D receptor, oestrogen receptor-alpha and calcium-sensing receptor genotypes, bone mineral density and biochemical markers in Paget’s disease of bone. Rheumatology 43:692–695

    CAS  PubMed  Google Scholar 

  21. Vezzoli G, Tanini A, Ferrucci L et al (2002) Influence of calcium-sensing receptor gene on urinary calcium excretion in stone-forming patients. J Am Soc Nephrol 13:2517–2523

    CAS  PubMed  Google Scholar 

  22. O’Seaghdha CM, Yang Q, Glazer NL et al (2010) Common variants in the calcium-sensing receptor gene are associated with total serum calcium levels. Hum Mol Genet 19:4296–4303

    PubMed Central  PubMed  Google Scholar 

  23. Wang JG, Staessen JA (2000) Genetic polymorphisms in the renin-angiotensin system: relevance for susceptibility to cardiovascular disease. Eur J Pharmacol 410:289–302

    CAS  PubMed  Google Scholar 

  24. Bonnardeaux A, Davies E, Jeunemaitre X et al (1994) Angiotensin-II type-1 receptor gene polymorphisms in human essential-hypertension. Hypertension 24:63–69

    CAS  PubMed  Google Scholar 

  25. Jeunemaitre X, Soubrier F, Kotelevtsev YV et al (1992) Molecular-basis of human hypertension—role of angiotensinogen. Cell 71:169–180

    CAS  PubMed  Google Scholar 

  26. Rigat B, Hubert C, Alhencgelas F et al (1990) An insertion deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86:1343–1346

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Azizi M, Guyene TT, Chatellier G et al (1997) Additive effects of losartan and enalapril on blood pressure and plasma active renin. Hypertension 29:634–640

    CAS  PubMed  Google Scholar 

  28. Takami S, Katsuya T, Rakugi H et al (1998) Angiotensin II type 1 receptor gene polymorphism is associated with increase of left ventricular mass but not with hypertension. Am J Hypertens 11:316–321

    CAS  PubMed  Google Scholar 

  29. Tiret L, Bonnardeaux A, Poirier O et al (1994) Synergistic effects of angiotensin-converting enzyme and angiotensin-II type-1 receptor gene polymorphisms on risk of myocardial-infarction. Lancet 344:910–913

    CAS  PubMed  Google Scholar 

  30. Tomino Y, Makita Y, Shike T et al (1999) Relationship between polymorphism in the angiotensinogen, angiotensin-converting enzyme or angiotensin II receptor and renal progression in Japanese NIDDM patients. Nephron 82:139–144

    CAS  PubMed  Google Scholar 

  31. Benetos A, Cambien F, Gautier S et al (1996) Influence of the angiotensin II type 1 receptor gene polymorphism on the effects of perindopril and nitrendipine on arterial stiffness in hypertensive individuals. Hypertension 28:1081–1084

    CAS  PubMed  Google Scholar 

  32. Amant C, Hamon M, Bauters C et al (1997) The angiotensin II type 1 receptor gene polymorphism is associated with coronary artery vasoconstriction. J Am Coll Cardiol 29:486–490

    CAS  PubMed  Google Scholar 

  33. van Geel PP, Pinto YM, Voors AA et al (2000) Angiotensin II type 1 receptor A1166C gene polymorphism is associated with an increased response to angiotensin II in human arteries. Hypertension 35:717–721

    PubMed  Google Scholar 

  34. Danser AHJ, Schunkert H (2000) Renin–angiotensin system gene polymorphisms: potential mechanisms for their association with cardiovascular diseases. Eur J Pharmacol 410:303–316

    CAS  PubMed  Google Scholar 

  35. Fatini C, Gensini F, Sticchi E et al (2003) ACE DD genotype: an independent predisposition factor to venous thromboembolism. Eur J Clin Invest 33:642–647

    CAS  PubMed  Google Scholar 

  36. Andrikopoulos GK, Richter DJ, Needham EW, GEMIG study investigators et al (2004) The paradoxical association of common polymorphisms of the renin-angiotensin system genes with risk of myocardial infarction. Eur J Cardiovasc Prev Rehabil 11:477–483

    PubMed  Google Scholar 

  37. Thompson MD, Comings DE, Abu-Ghazalah R et al (2004) Variants of the orexin2/hcrt2 receptor gene identified in patients with excessive daytime sleepiness and patients with Tourette’s syndrome comorbidity. Am J Med Genet 129B:69–75

    PubMed  Google Scholar 

  38. Psychosis Endophenotypes International Consortium the Wellcome Trust Case-Control Consortium 2. (2013) A genome-wide association analysis of a broad psychosis phenotype identifies three loci for further investigation. Biol Psychiatry. doi:10.1016/j.biopsych.2013.03.033

    Google Scholar 

  39. Missale C, Nash SR, Robinson SW et al (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    CAS  PubMed  Google Scholar 

  40. Müller DJ, Chowdhury NI, Zai CC (2013) The pharmacogenetics of antipsychotic-induced adverse events. Curr Opin Psychiatry 26:144–150

    PubMed  Google Scholar 

  41. Thompson M, Comings DE, Feder L et al (1998) Mutation screening of the dopamine D1 receptor gene in Tourette’s syndrome and alcohol dependent patients. Am J Med Genet 81:241–244

    CAS  PubMed  Google Scholar 

  42. Oak JN, Oldenhof J, Van Tol HH (2000) The dopamine D(4) receptor: one decade of research. Eur J Pharmacol 405:303–327

    CAS  PubMed  Google Scholar 

  43. Vandenbergh DJ, Thompson MD, Cook EH et al (2000) Human dopamine transporter gene: coding region conservation among normal, Tourette’s disorder, alcohol dependence and attention-deficit hyperactivity disorder populations. Mol Psychiatry 5:283–292

    CAS  PubMed  Google Scholar 

  44. Comings DE, Gade-Andavolu R, Gonzalez N et al (2000) Multivariate analysis of associations of 42 genes in ADHD, ODD and conduct disorder. Clin Genet 58:31–40

    CAS  PubMed  Google Scholar 

  45. Hall FS, Drgonova J, Jain S, Uhl GR (2013) Implications of genome wide association studies for addiction: are our a priori assumptions all wrong? Pharmacol Ther. doi:10.1016/j.pharmthera.2013.07.006

    Google Scholar 

  46. Thompson MD, Siminovitch KA, Cole DE (2008) G Protein-coupled receptor pharmacogenetics. Methods Mol Biol 448:139–185

    CAS  PubMed  Google Scholar 

  47. Lamey M, Thompson M, Varghese G et al (2002) Distinct residues in the carboxyl tail mediate agonist-induced desensitization and internalization of the human dopamine D-1 receptor. J Biol Chem 277:9415–9421

    CAS  PubMed  Google Scholar 

  48. Thompson MD, Cole DE, Jose P (2008) The pharmacogenomics of G protein-coupled receptor signaling: insight from health and disease. Methods Mol Biol 448:77–108

    CAS  PubMed  Google Scholar 

  49. Thompson MD, Percy ME, Burnham WM et al (2008) G Protein-coupled receptors disrupted in human genetic disease. Methods Mol Biol 448:109–138

    CAS  PubMed  Google Scholar 

  50. Monsma FJ Jr, Mahan LC, McVittie LD et al (1990) Molecular cloning and expression of a D1 dopamine receptor linked to adenylyl cyclase activation. Proc Natl Acad Sci U S A 87:6723–6727

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Zhou QY, Grandy DK, Thambi L et al (1990) Cloning and expression of human and rat D1 dopamine receptors. Nature 347:76–80

    CAS  PubMed  Google Scholar 

  52. Sunahara RK, Niznik HB, Weiner DM et al (1990) Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature 347:80–83

    CAS  PubMed  Google Scholar 

  53. Sunahara RK, Guan HC, O’Dowd BF et al (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D5. Nature 350:614–619

    CAS  PubMed  Google Scholar 

  54. Grandy DK, Marchionni MA, Makam H et al (1989) Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc Natl Acad Sci U S A 86:9762–9766

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Sokoloff P, Giros B, Martres MP, Barthenet ML et al (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    CAS  PubMed  Google Scholar 

  56. Van Tol HH, Bunzow JR, Guan HC et al (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614

    PubMed  Google Scholar 

  57. Seeman P, Seeman MV (2011) Schizophrenia and the supersensitive synapse. Neuropsychiatry 1:233–242

    Google Scholar 

  58. Giros B, Sokoloff P, Martres MP et al (1989) Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 342:923–926

    CAS  PubMed  Google Scholar 

  59. Monsma FJ Jr, McVittie LD, Gerfen CR et al (1989) Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature 342:926–929

    CAS  PubMed  Google Scholar 

  60. Comings DE, Gade R, Wu S et al (1997) Studies of the potential role of the dopamine D-1 receptor gene in addictive behaviors. Mol Psychiatry 2:44–56

    CAS  PubMed  Google Scholar 

  61. Ni X, Trakalo JM, Mundo E, Lee L et al (2002) Family-based association study of the serotonin-2A receptor gene (5-HT2A) and bipolar disorder. Neuromolecular Med 2:251–259

    CAS  PubMed  Google Scholar 

  62. Severino G, Congiu D, Serreli C et al (2005) A48G polymorphism in the D1 receptor genes associated with bipolar I disorder. Am J Med Genet 134B:37–38

    PubMed  Google Scholar 

  63. Mottagui-Tabar S, Faghihi MA, Mizuno Y et al (2005) Identification of functional SNPs in the 5-prime flanking sequences of human genes. BMC Genomics 6:18

    PubMed Central  PubMed  Google Scholar 

  64. Hwang R, Shinkai T, De L et al (2006) Association study of four dopamine D1 receptor gene polymorphisms and clozapine treatment response. J Psychopharmacol 16:248–259

    CAS  Google Scholar 

  65. Dmitrzak-Weglarz M, Rybakowski JK, Slopien A et al (2006) Dopamine receptor D1 gene −48A/G polymorphism is associated with bipolar illness but not with schizophrenia in a Polish population. Neuropsychobiology 53:46–50

    CAS  PubMed  Google Scholar 

  66. Seeman P (2013) Schizophrenia and dopamine receptors. Eur Neuropsychopharmacol. doi:10.1016/j.euroneuro.2013.06.005

    PubMed  Google Scholar 

  67. Liu ISC, Seeman P, Sanyal S et al (1996) Dopamine D4 receptor variant in Africans, D (Valine194Glycine), is insensitive to dopamine and clozapine: report of a homozygous individual. Am J Med Genet 61:277–282

    CAS  PubMed  Google Scholar 

  68. Okuyama Y, Ishiguro H, Toru M et al (1999) A genetic polymorphism in the promoter region of DRD4 associated with expression and schizophrenia. Biochem Biophys Res Commun 258:292–295

    CAS  PubMed  Google Scholar 

  69. Kaiser R, Konneker M, Henneken M et al (2000) Dopamine D4 receptor 48-bp repeat polymorphism: no association with response to antipsychotic treatment, but association with catatonic schizophrenia. Mol Psychiatry 5:418–424

    CAS  PubMed  Google Scholar 

  70. Jonsson EG, Norton N, Gustavsson JF et al (2000) A promoter polymorphism in the monoamine oxidase A gene and its relationships to monoamine metabolite concentrations in CSF of healthy volunteers. J Psychiatr Res 34:239–244

    CAS  PubMed  Google Scholar 

  71. Seeman P, Guan HC, Van Tol HHM (1995) Schizophrenia—elevation of dopamine D-4-like sites, using [H-3] nemonapride and [I-125]epidepride. Eur J Pharmacol 286:R3–R5

    CAS  PubMed  Google Scholar 

  72. Seeman P, Corbett R, Van Tol HHM (1997) Atypical neuroleptics have low affinity for dopamine D-2 receptors or are selective for D-4 receptors. Neuropsychopharmacology 16:93–110

    CAS  PubMed  Google Scholar 

  73. Nakajima M, Hattori E, Yamada K et al (2007) Association and synergistic interaction between promoter variants of the DRD4 gene in Japanese schizophrenics. J Hum Genet 52:86–91

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Manor I, Tyano S, Eisenberg J et al (2002) The short DRD4 repeats confer risk to attention deficit hyperactivity disorder in a family-based design and impair performance on a continuous performance test (TOVA). Mol Psychiatry 7:790–794

    CAS  PubMed  Google Scholar 

  75. Gornick MC, Addington A, Shaw P et al (2007) Association of the dopamine receptor D4 (DRD4) gene 7-repeat allele with children with attention-deficit/hyperactivity disorder (ADHD): an update. Am J Med Genet 144:379–382

    Google Scholar 

  76. Brookes K, Xu X, Chen W et al (2006) The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 11:934–953

    CAS  PubMed  Google Scholar 

  77. Li D, Sham PC, Owen MJ, He L (2006) Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 15:2276–2284

    CAS  PubMed  Google Scholar 

  78. Ronai Z, Szekely A, Nemoda Z et al (2001) Association between novelty seeking and the-521 C/T polymorphism in the promoter region of the DRD4 gene. Mol Psychiatry 6:35–38

    CAS  PubMed  Google Scholar 

  79. Strobel A, Lesch KP, Hohenberger K et al (2002) No association between dopamine D4 receptor gene exon III and −521C/T polymorphism and novelty seeking. Mol Psychiatry 7:537–538

    CAS  PubMed  Google Scholar 

  80. Laucht M, Becker K, Blomeyer D et al (2007) Novelty seeking involved in mediating the association between the dopamine D4 receptor gene exon III polymorphism and heavy drinking in male adolescents: results from a high-risk community sample. Biol Psychiatry 61:87–92

    CAS  PubMed  Google Scholar 

  81. Talkowski ME, Mansour H, Chowdari KV et al (2006) Novel, replicated associations between dopamine D3 receptor gene polymorphisms and schizophrenia in two independent samples. Biol Psychiatry 60:570–577

    CAS  PubMed  Google Scholar 

  82. Sivagnanasundaram S, Morris AG, Gaitonde EJ et al (2000) A cluster of single nucleotide polymorphisms in the 5-leader of the human dopamine D3 receptor gene (DRD3) and its relationship to schizophrenia. Neurosci Lett 279:13–16

    CAS  PubMed  Google Scholar 

  83. Hawi Z, McCabe U, Straub RE et al (1998) Examination of new and reported data of the DRD3/Mscl polymorphism: no support for the proposed association with schizophrenia. Mol Psychiatry 3:150–155

    CAS  PubMed  Google Scholar 

  84. Eichhammer P, Albus M, Klein HE et al (2000) Association of dopamine-receptor gene variants with neuroleptically induced acathisia in schizophrenic patients. Psychiatr Prax 27:S4

    Google Scholar 

  85. Liao DL, Yeh YC, Chen HM et al (2001) Association between the Ser9Gly polymorphism of the dopamine D3 receptor gene and tardive dyskinesia in Chinese schizophrenic patients. Neuropsychobiology 44:95–98

    CAS  PubMed  Google Scholar 

  86. Lerer B, Segman RH, Fangerau H et al (2002) Pharmacogenetics of tardive dyskinesia: combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology 27:105–119

    CAS  PubMed  Google Scholar 

  87. Comings DE, Gade R, MacMurray JP et al (1996) Genetic variants of the human obesity (OB) gene: association with body mass index in young women, psychiatric symptoms, and interaction with the dopamine D2 receptor (DRD2) gene. Mol Psychiatry 1:325–335

    CAS  PubMed  Google Scholar 

  88. Chen CH, Wei FC, Koong FJ et al (1997) Association of TaqI a poly- morphism of dopamine D-2 receptor gene and tardive dyskinesia in schizophrenia. Biol Psychiatry 41:827–829

    CAS  PubMed  Google Scholar 

  89. Morton LM, Wang SS, Bergen AW et al (2006) DRD2 genetic variation in relation to smoking and obesity in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Pharmacogenet Genomics 16:901–910

    CAS  PubMed  Google Scholar 

  90. Comings DE (1994) Genetic-factors in substance-abuse based on studies of Tourette-syndrome and ADHD probands and relatives. 1. Drug-abuse. Drug Alcohol Depend 35:1–16

    CAS  PubMed  Google Scholar 

  91. Noble EP (1998) DRD2 gene and alcoholism. Science 281:1287–1288

    CAS  PubMed  Google Scholar 

  92. Madrid GA, MacMurray J, Lee JW et al (2001) Stress as a mediating factor in the association between the DRD2 TaqI polymorphism and alcoholism. Alcohol 23:117–122

    CAS  PubMed  Google Scholar 

  93. Sasabe T, Furukawa A, Matsusita S et al (2006) Association analysis of the dopamine receptor D2 (DRD2) SNP rs1076560 in alcoholic patients. Neurosci Lett 412:139–142

    PubMed  Google Scholar 

  94. Hori H, Ohmori O, Shinkai T et al (2001) Association between three functional polymorphisms of dopamine D2 receptor gene and tardive dyskinesia in schizophrenia. Am J Med Genet 105:774–778

    CAS  PubMed  Google Scholar 

  95. Zai CC, Hwang RW, De L et al (2007) Association study of tardive dyskinesia and 12 DRD2 polymorphisms in schizophrenia patients. Int J Neuropsychopharmacol 10:639–651

    CAS  PubMed  Google Scholar 

  96. Seeman P, Weinshenker D, Quirion R et al (2005) Dopamine supersensitivity correlates with D2 high states, implying many paths to psychosis. Proc Natl Acad Sci U S A 102:3513–3518

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Arranz MJ, Munro J, Birkett J et al (2000) Pharmacogenetic prediction of clozapine response. Lancet 355:1615–1616

    CAS  PubMed  Google Scholar 

  98. Du LS, Bakish D, Lapierre YD et al (2000) Association of polymorphism of serotonin 2A receptor gene with suicidal ideation in major depressive disorder. Am J Med Genet 96:56–60

    CAS  PubMed  Google Scholar 

  99. Preuss UW, Koller G, Bahlmann M et al (2000) No association between suicidal behavior and 5-HT2A-T102C polymorphism in alcohol dependents. Am J Med Genet 96:877–878

    CAS  PubMed  Google Scholar 

  100. Levitan RD, Masellis M, Basile VS et al (2002) Polymorphism of the serotonin-2A receptor gene (HTR2A) associated with childhood attention deficit hyperactivity disorder (ADHD) in adult women with seasonal affective disorder. J Affect Disord 71:229–233

    CAS  PubMed  Google Scholar 

  101. Thompson MD, Gonzalez N, Nguyen T et al (2000) Serotonin transporter gene polymorphisms in alcohol dependence. Alcohol 22:61–67

    CAS  PubMed  Google Scholar 

  102. Arranz MJ, Collier DA, Munro J et al (1996) Analysis of a structural polymorphism in the 5-HT2A receptor and clinical response to clozapine. Neurosci Lett 217:177–178

    CAS  PubMed  Google Scholar 

  103. Arranz MJ, Munro J, Sham P et al (1998) Meta-analysis of studies on genetic variation in 5-HT2A receptors and clozapine response. Schizophr Res 32:93–99

    CAS  PubMed  Google Scholar 

  104. Yu YW, Tsai SJ, Yang KH et al (2001) Evidence for an association between polymorphism in the serotonin-2A receptor variant (102T/C) and increment of N100 amplitude in schizophrenics treated with clozapine. Neuropsychobiology 43:79–82

    CAS  PubMed  Google Scholar 

  105. Davies MA, Setola V, Strachan RT et al (2006) Pharmacologic analysis of non-synonymous coding h5-HT2A SNPs reveals alterations in atypical antipsychotic and agonist efficacies. Pharmacogenomics J 6:42–51

    CAS  PubMed  Google Scholar 

  106. Hazelwood LA, Sanders-Bush E (2004) His452Tyr polymorphism in the human 5–HT2A receptor destabilizes the signaling conformation. Mol Pharmacol 66:1293–1300

    CAS  PubMed  Google Scholar 

  107. Archer T, Oscar-Berman M, Blum K et al (2013) Epigenetic modulation of mood disorders. J Genet Syndr Gene Ther 4(120). pii: 1000120

    Google Scholar 

  108. Choi MJ, Kang RH, Ham BJ et al (2005) Serotonin receptor 2A gene polymorphism (−1438A/G) and short-term treatment response to citalopram. Neuropsychobiology 52:155–162

    CAS  PubMed  Google Scholar 

  109. Chee IS, Lee SW, Kim JL et al (2001) 5-HT2A receptor gene promoter polymorphism -1438A/G and bipolar disorder. Psychiatr Genet 11:111–114

    CAS  PubMed  Google Scholar 

  110. Vaquero LC, Baca-Garcia E, az-Hernandez M et al (2006) Association between the T102C polymorphism of the serotonin-2A receptor gene and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 30:1136–1138

    Google Scholar 

  111. Abdolmaleky HM, Faraone SV, Glatt SJ et al (2004) Meta-analysis of association between the T102C polymorphism of the 5HT2a receptor gene and schizophrenia. Schizophr Res 67:53–62

    PubMed  Google Scholar 

  112. Chen RY, Sham P, Chen EY et al (2001) No association between T102C polymorphism of serotonin-2A receptor gene and clinical phenotypes of Chinese schizophrenic patients. Psychiatry Res 105:175–185

    CAS  PubMed  Google Scholar 

  113. Joober R, Benkelfat C, Brisebois K et al (1999) T102C polymorphism in the 5HT2A gene and schizophrenia: relation to phenotype and drug response variability. J Psychiatry Neurosci 24:141–146

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Czerski PM, Leszczynska-Rodziewicz A, Dmitrzak-Weglarz M et al (2003) Association analysis of serotonin 2A receptor gene T102C polymorphism and schizophrenia. World J Biol Psychiatry 4:69–73

    PubMed  Google Scholar 

  115. Khait VD, Huang YY, Zalsman G et al (2005) Association of serotonin 5-HT2A receptor binding and the T102C polymorphism in depressed and healthy Caucasian subjects. Neuropsychopharmacology 30:166–172

    CAS  PubMed  Google Scholar 

  116. Ono H, Shirakawa O, Nishiguchi N et al (2001) Serotonin 2A receptor gene polymorphism is not associated with completed suicide. J Psychiatr Res 35:173–176

    CAS  PubMed  Google Scholar 

  117. Holmes C, Arranz MJ, Powell JF et al (1998) 5-HT2A and 5-HT2C receptor polymorphisms and psychopathology in late onset alzheimer’s disease. Hum Mol Genet 7:1507–1509

    CAS  PubMed  Google Scholar 

  118. Rocchi A, Micheli D, Ceravolo R et al (2003) Serotoninergic polymorphisms (5-HTTLPR and 5-HT2A): association studies with psychosis in Alzheimer disease. Genet Test 7:309–314

    CAS  PubMed  Google Scholar 

  119. Yuan X, Yamada K, Ishiyama-Shigemoto S et al (2000) Identification of polymorphic loci in the promoter region of the serotonin 5-HT2C receptor gene and their association with obesity and type II diabetes. Diabetologia 43:373–376

    CAS  PubMed  Google Scholar 

  120. Ellingrod VL, Miller D, Ringold JC et al (2004) Distribution of the serotonin 2C (5HT2C) receptor gene -759C/T polymorphism in patients with schizophrenia and normal controls. Psychiatr Genet 14:93–95

    PubMed  Google Scholar 

  121. Reynolds GP, Zhang ZJ, Zhang XB (2002) Association of antipsychotic drug- induced weight gain with a 5-HT2C receptor gene polymorphism. Lancet 359:2086–2087

    CAS  PubMed  Google Scholar 

  122. Basile VS, Masellis M, De L et al (2002) 759C/T genetic variation of 5HT(2C) receptor and clozapine-induced weight gain. Lancet 360:1790–1791

    PubMed  Google Scholar 

  123. Muller DJ, Kennedy JL (2006) Genetics of antipsychotic treatment emergent weight gain in schizophrenia. Pharmacogenomics 7:863–887

    PubMed  Google Scholar 

  124. Miller DD, Ellingrod VL, Holman TL et al (2005) Clozapine-induced weight gain associated with the 5HT2C receptor −759C/T polymorphism. Am J Med Genet 133B:97–100

    PubMed  Google Scholar 

  125. Sodhi MS, Arranz MJ, Curtis D et al (1995) Association between clozapine response and allelic variation in the 5-HT2C receptor gene. Neuroreport 7:169–172

    CAS  PubMed  Google Scholar 

  126. Malhotra AK, Goldman D, Ozaki N et al (1996) Clozapine response and the 5HT2C Cys23Ser polymorphism. Neuroreport 7:2100–2102

    CAS  PubMed  Google Scholar 

  127. Tsai SJ, Chiu HJ, Wang YC et al (1999) Association study of serotonin-6 receptor variant (C267T) with schizophrenia and aggressive behavior. Neurosci Lett 271:135–137

    CAS  PubMed  Google Scholar 

  128. Kan R, Wang B, Zhang C et al (2004) Association of the HTR6 polymorphism C267T with late-onset alzheimer’s disease in Chinese. Neurosci Lett 372:27–29

    PubMed  Google Scholar 

  129. Orlacchio A, Kawarai T, Paciotti E et al (2002) Association study of the 5-hydroxytryptamine (6) receptor gene in Alzheimer’s disease. Neurosci Lett 325:13–16

    CAS  PubMed  Google Scholar 

  130. Thompson MD, Noble-Topham S, Percy ME et al (2012) Chromosome 1p36 in migraine with aura: association study of the 5HT(1D) locus. Neuroreport 23:45–48

    CAS  PubMed  Google Scholar 

  131. Chasman DI, Schürks M, Anttila V et al (2011) Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet 43:695–698

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Kiel S, Bruss M, Bonisch H, Gothert M (2000) Pharmacological properties of the naturally occurring Phe-124-Cys variant of the human 5-HT1B receptor: changes in ligand binding, G-protein coupling and second messenger formation. Pharmacogenetics 10:655–666

    CAS  PubMed  Google Scholar 

  133. Smoller JW, Biederman J, Arbeitman L et al (2006) Association between the 5HT1B receptor gene (HTR1B) and the inattentive subtype of ADHD. Biol Psychiatry 59:460–467

    CAS  PubMed  Google Scholar 

  134. Ickowicz A, Feng Y, Wigg K et al (2007) The serotonin receptor HTR1B: Gene poly-morphisms in attention deficit hyperactivity disorder. Am J Med 144B:121–125

    CAS  Google Scholar 

  135. Nothen MM, Erdmann J, Shimron-Abarbanell D et al (1994) Identification of genetic variation in the human serotonin 1D beta receptor gene. Biochem Biophys Res Commun 205:1194–1200

    CAS  PubMed  Google Scholar 

  136. Lappalainen J, Dean M, Charbonneau L et al (1995) Mapping of the serotonin 5-HT1D beta autoreceptor gene on chromosome 6 and direct analysis for sequence variants. Am J Med Genet 60:157–161

    CAS  PubMed  Google Scholar 

  137. Mundo E, Richter MA, Zai G et al (2002) 5HT1Dbeta Receptor gene implicated in the pathogenesis of obsessive–compulsive disorder: further evidence from a family-based association study. Mol Psychiatry 7:805–809

    CAS  PubMed  Google Scholar 

  138. Mundo E, Richter MA, Sam F et al (2000) Is the 5- HT(1Dbeta) receptor gene implicated in the pathogenesis of obsessive-compulsive disorder? Am J Psychiatry 157:1160–1161

    CAS  PubMed  Google Scholar 

  139. Lochner C, Hemmings SM, Kinnear CJ et al (2004) Gender in obsessive–compulsive disorder: clinical and genetic findings. Eur Neuropsychopharmacol 14:105–113

    CAS  PubMed  Google Scholar 

  140. Thompson MD, Bowen RA, Wong BY et al (2005) Whole genome amplification of buccal cell DNA: genotyping concordance before and after multiple displacement amplification. Clin Chem Lab Med 43:157–162

    CAS  PubMed  Google Scholar 

  141. Befort K, Filliol D, Decaillot FM et al (2001) A single nucleotide polymorphic mutation in the human mu-opioid receptor severely impairs receptor signaling. J Biol Chem 276:3130–3137

    CAS  PubMed  Google Scholar 

  142. Mura E, Govoni S, Racchi M et al (2013) Consequences of the 118A>G polymorphism in the OPRM1 gene: translation from bench to bedside? J Pain Res 6:331–353

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Beyer A, Koch T, Schroder H et al (2004) Effect of the A118G polymorphism on binding affinity, potency and agonist-mediated endocytosis, desensitization, and resensitization of the human mu-opioid receptor. J Neurochem 89:553–560

    CAS  PubMed  Google Scholar 

  144. Wang DX, Quillan JM, Winans K et al (2001) Single nucleotide polymorphisms in the human mu opioid receptor gene alter basal G protein coupling and calmodulin binding. J Biol Chem 276:34624–34630

    CAS  PubMed  Google Scholar 

  145. Gelernter J, Kranzler H, Cubells J (1999) Genetics of two mu opioid receptor gene (OPRM1) exon I polymorphisms: population studies, and allele frequencies in alcohol and drug-dependent subjects. Mol Psychiatry 4:476–483

    CAS  PubMed  Google Scholar 

  146. Nishizawa D, Fukuda K, Kasai S et al (2012) Genome-wide association study identifies a potent locus associated with human opioid sensitivity. Mol Psychiatry. doi:10.1038/mp.2012.164

    PubMed Central  PubMed  Google Scholar 

  147. Johnson AD, Newton-Cheh C, Chasman DI et al (2011) Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension 57:903–910

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Liggett SB (2000) Pharmacogenetics of beta-1- and beta-2-adrenergic receptors. Pharmacology 61:167–173

    CAS  PubMed  Google Scholar 

  149. Mialet-Perez J, Liggett SB (2006) Pharmacogenetics of betal-adrenergic receptors in heart failure and hypertension. Arch Mal Coeur Vaiss 99:616–620

    CAS  PubMed  Google Scholar 

  150. Strosberg AD (1997) Structure and function of the beta(3)-adrenergic receptor. Annu Rev Pharmacol Toxicol 37:421–450

    CAS  PubMed  Google Scholar 

  151. Masson S, Masseroli M, Fiordaliso F et al (1999) Effects of a DA(2)/alpha(2) agonist and a beta(1)-blocker in combination with an ACE inhibitor on adrenergic activity and left ventricular remodeling in an experimental model of left ventricular dysfunction after coronary artery occlusion. J Cardiovasc Pharmacol 34:321–326

    CAS  PubMed  Google Scholar 

  152. Mason DA, Moore JD, Green SA, Liggett SB (1999) A gain-of-function poly-morphism in a G-protein coupling domain of the human beta(1)-adrenergic receptor. J Biol Chem 274:12670–12674

    CAS  PubMed  Google Scholar 

  153. Small KM, Forbes SL, Brown KM et al (2000) An Asn to Lys poly-morphism in the third intracellular loop of the human alpha(2A)-adrenergic receptor imparts enhanced agonist-promoted G(i) coupling. J Biol Chem 275:38518–38523

    CAS  PubMed  Google Scholar 

  154. Liggett SB (2004) Polymorphisms of beta-adrenergic receptors in heart failure. Am J Med 117:525–527

    PubMed  Google Scholar 

  155. Liggett SB (2000) beta(2)-Adrenergic receptor pharmacogenetics. Am J Respir Crit Care Med 161:S197–S201

    CAS  PubMed  Google Scholar 

  156. Liggett SB, Wagoner LE, Craft LL et al (1998) The Ile164 beta(2)-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest 102:1534–1539

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Liggett SB (1997) Polymorphisms of the beta(2)-adrenergic receptor and asthma. Am J Respir Crit Care Med 156:S156–S162

    CAS  PubMed  Google Scholar 

  158. Xu BY, Huang D, Pirskanen R, Lefvert AK (2000) beta2-adrenergic receptor gene polymorphisms in myasthenia gravis (MG). Clin Exp Immunol 119:156–160

    Google Scholar 

  159. Pietras CO, Vendelin J, Anedda F et al (2011) The asthma candidate gene NPSR1 mediates isoform specific downstream signalling. BMC Pulm Med 11:39

    PubMed Central  PubMed  Google Scholar 

  160. Ellinghaus D, Folseraas T, Holm K et al (2012) Genome-wide association analysis in Primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4. Hepatology. doi:10.1002/hep.25977

    Google Scholar 

  161. Mathias RA, Grant AV, Rafaels N et al (2009) A genome-wide association study on African-ancestry populations for asthma. J Allergy Clin Immunol 125:336–346

    PubMed Central  PubMed  Google Scholar 

  162. Small KM, McGraw DW, Liggett SB (2003) Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu Rev Pharmacol Toxicol 43:381–411

    CAS  PubMed  Google Scholar 

  163. Drysdale CM, McGraw DW, Stack CB et al (2000) Complex promoter and coding region beta(2)-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci U S A 97:10483–10488

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Reihsaus E, Innis M, Macintyre N et al (1993) Mutations in the gene encoding for the beta-2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol 8:334–339

    CAS  PubMed  Google Scholar 

  165. Israel E, Drazen JM, Liggett SB et al (2000) The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am J Respir Crit Care Med 162:75–80

    CAS  PubMed  Google Scholar 

  166. Park JS, Chang HS, Park CS et al (2005) Association analysis of cysteinyl-leukotriene receptor 2 (CYSLTR2) polymorphisms with aspirin intolerance in asthmatics. Pharmacogenet Genomics 15:483–492

    CAS  PubMed  Google Scholar 

  167. Kanaoka Y, Maekawa A, Austen KF (2013) Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. J Biol Chem 288:10967–10972

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Reiss TF, Altman LC, Chervinsky P et al (1996) Effects of montelukast (MK-0476), a new potent cysteinyl leukotriene (LDT(4)) receptor antagonist, in patients with chronic asthma. J Allergy Clin Immunol 98:528–534

    CAS  PubMed  Google Scholar 

  169. Grossman J, Faiferman I, Dubb JW et al (1997) Results of the first U.S. double-blind, placebo-controlled, multicenter clinical study in asthma with pranlukast, a novel leukotriene receptor antagonist. J Asthma 34:321–328

    CAS  PubMed  Google Scholar 

  170. Suissa S, Dennis R, Ernst P et al (1997) Effectiveness of the leukotriene receptor antagonist zafirlukast for mild-to-moderate asthma—a randomized, double-blind, placebo-controlled trial. Ann Intern Med 126:177–183

    CAS  PubMed  Google Scholar 

  171. Jarvis B, Markham A (2000) Montelukast—a review of its therapeutic potential in persistent asthma. Drugs 59:891–928

    CAS  PubMed  Google Scholar 

  172. Krawiec ME, Wenzel SE (1999) Use of leukotriene antagonists in childhood asthma. Curr Opin Pediatr 11:540–547

    CAS  PubMed  Google Scholar 

  173. Drazen JM, Silverman EK, Lee TH (2000) Heterogeneity of therapeutic responses in asthma. Br Med Bull 56:1054–1070

    CAS  PubMed  Google Scholar 

  174. Yoshida S, Sakamoto H, Ishizaki Y et al (2000) Efficacy of leukotriene receptor antagonist in bronchial hyperresponsiveness and hypersensitivity to analgesic in aspirin-intolerant asthma. Clin Exp Allergy 30:64–70

    CAS  PubMed  Google Scholar 

  175. Obase Y, Shimoda T, Tomari S et al (2001) Effects of pranlukast on aspirin-induced bronchoconstriction: differences in chemical mediators between aspirin-intolerant and tolerant asthmatic patients. Ann Allergy Asthma Immunol 87:74–79

    CAS  PubMed  Google Scholar 

  176. Williams B, Noonan G, Reiss TF et al (2001) Long-term asthma control with oral montelukast and inhaled beclomethasone for adults and children 6 years and older. Clin Exp Allergy 31:845–854

    CAS  PubMed  Google Scholar 

  177. Meltzer EO, Malmstrom K, Lu S et al (2000) Concomitant montelukast and loratadine as treatment for seasonal allergic rhinitis: a randomized, placebo-controlled clinical trial. J Allergy Clin Immunol 105:917–922

    CAS  PubMed  Google Scholar 

  178. Noonan MJ, Chervinsky P, Brandon M et al (1998) Montelukast, a potent leukotriene receptor antagonist, causes dose-related improvements in chronic asthma. Eur Respir J 11:1232–1239

    CAS  PubMed  Google Scholar 

  179. Woszczek G, Pawliczak R, Qi HY et al (2005) Functional characterization of human cysteinyl leukotriene 1 receptor gene structure. J Immunol 175:5152–5159

    CAS  PubMed  Google Scholar 

  180. Jiang Y, Borrelli LA, Kanaoka Y et al (2007) CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells. Blood 110:3263–3270

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Mao XQ, Gao PS, Roberts MH et al (1999) Variants of endothelin-1 and its receptors in atopic asthma. Biochem Biophys Res Commun 262:259–262

    CAS  PubMed  Google Scholar 

  182. Michel S, Liang L, Depner M et al (2010) Unifying candidate gene and GWAS Approaches in Asthma. PLoS One 12(511):e13894

    Google Scholar 

  183. Spik I, Brenuchon C, Angeli V et al (2005) Activation of the prostaglandin D-2 receptor DP2/CRTH2 increases allergic inflammation in mouse. J Immunol 174:3703–3708

    CAS  PubMed  Google Scholar 

  184. Oguma T, Palmer LJ, Birben E et al (2004) Role of prostanoid DP receptor variants in susceptibility to asthma. N Engl J Med 351:1752–1763

    CAS  PubMed  Google Scholar 

  185. Cookson W, Moffatt M (2004) Making sense of asthma genes. N Engl J Med 351:1794–1796

    CAS  PubMed  Google Scholar 

  186. Huang JL, Gao PS, Mathias RA et al (2004) Sequence variants of the gene encoding chemoattractant receptor expressed on Th2 cells (CRTH2) are associated with asthma and differentially influence mRNA stability. Hum Mol Genet 13:2691–2697

    CAS  PubMed  Google Scholar 

  187. Huang SK, Mathias RA, Ehrlich E et al (2003) Evidence for asthma susceptibility genes on chromosome 11 in an African-American population. Hum Genet 113:71–75

    CAS  PubMed  Google Scholar 

  188. Xu JF, Meyers DA, Ober C et al (2001) Genomewide screen and identification of gene-gene interactions for asthma-susceptibility loci in three U.S. populations: collaborative study on the genetics of asthma. Am J Hum Genet 68:1437–1446

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Nagata K, Hirai H, Tanaka K et al (1999) CRTH2, an orphan receptor of T-helper-2- cells, is expressed on basophils and eosinophils and responds to mast cell-derived factor(s). FEBS Lett 459:195–199

    CAS  PubMed  Google Scholar 

  190. Nagata K, Tanaka K, Ogawa K et al (1999) Selective expression of a novel surface molecule by human Th2 cells in vivo. J Immunol 162:1278–1286

    CAS  PubMed  Google Scholar 

  191. Cosmi L, Annunziato F, Iwasaki M et al (2000) CRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and disease. Eur J Immunol 30:2972–2979

    CAS  PubMed  Google Scholar 

  192. Hirai H, Tanaka K, Yoshie O et al (2001) Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 193:255–261

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Wang J, Xu Y, Zhao H et al (2009) Genetic variations in chemoattractant receptor expressed on Th2 cells (CRTH2) is associated with asthma susceptibility in Chinese children. Mol Biol Rep 36:1549–1553

    CAS  PubMed  Google Scholar 

  194. Narumiya S, FitzGerald GA (2001) Genetic and pharmacological analysis of prostanoid receptor function. J Clin Invest 108:25–30

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Parent JL, Labrecque P, Orsini MJ et al (1999) Internalization of the TXA2 receptor alpha and beta isoforms. Role of the differentially spliced COOH terminus in agonist-promoted receptor internalization. J Biol Chem 274:8941–8948

    CAS  PubMed  Google Scholar 

  196. Aizawa H, Shigyo M, Nogami H et al (1996) BAY u3405, a thromboxane A antagonist, reduces bronchial hyperresponsiveness in asthmatics. Chest 109:338–342

    CAS  PubMed  Google Scholar 

  197. Fujimura M, Nakatsumi Y, Nishi K et al (1995) Involvement of thromboxane A in bronchial hyperresponsiveness of asthma. Kanazawa Asthma Research Group. Pulm Pharmacol 8:251–257

    CAS  PubMed  Google Scholar 

  198. Dogne JM, de Leval X, Benoit P et al (2002) Therapeutic potential of thromboxane inhibitors in asthma. Expert Opin Investig Drugs 11:275–281

    CAS  PubMed  Google Scholar 

  199. Murk W, Walsh K, Hsu LI et al (2011) Attempted replication of 50 reported asthma risk genes identifies a SNP in RAD50 as associated with childhood atopic asthma. Hum Hered 71:97–105

    PubMed  Google Scholar 

  200. Capra V, Habib A, Accomazzo MR et al (2003) Thromboxane prostanoid receptor in human airway smooth muscle cells: a relevant role in proliferation. Eur J Pharmacol 474:149–159

    CAS  PubMed  Google Scholar 

  201. Citro S, Ravasi S, Rovati GE et al (2005) Thromboxane prostanoid receptor signals through G(i) protein to rapidly activate extracellular signal-regulated kinase in human airways. Am J Respir Cell Mol Biol 32:326–333

    CAS  PubMed  Google Scholar 

  202. Antczak A, Montuschi P, Kharitonov S et al (2002) Increased exhaled cysteinyl-leukotrienes and 8-isoprostane in aspirin-induced asthma. Am J Respir Crit Care Med 166:301–306

    PubMed  Google Scholar 

  203. Devillier P, Bessard G (1997) Thromboxane A(2) and related prostaglandins in airways. Fundam Clin Pharmacol 11:2–18

    CAS  PubMed  Google Scholar 

  204. Nishimura H, Tokuyama K, Inoue Y et al (2001) Acute effects of prostaglandin D-2 to induce airflow obstruction and airway microvascular leakage in guinea pigs: role of thromboxane A(2) receptors. Prostaglandins Other Lipid Mediat 66:1–15

    CAS  PubMed  Google Scholar 

  205. Kim SH, Choi JH, Park HS et al (2005) Association of thromboxane A receptor gene polymorphism with the phenotype of acetyl salicylic acid-intolerant asthma. Clin Exp Allergy 35:585–590

    CAS  PubMed  Google Scholar 

  206. Leung TF, Tang NLS, Lam CWK et al (2002) Thromboxane A receptor polymorphism is associated gene with the serum concentration of cat-specific immunoglobulin E as well as the development and severity of asthma in Chinese children. Pediatr Allergy Immunol 13:10–17

    PubMed  Google Scholar 

  207. Shin HD, Park BL, Jung JH et al (2003) Association of thromboxane A receptor (TBXA2R) with atopy and asthma. J Allergy Clin Immunol 112:454–457

    PubMed  Google Scholar 

  208. Unoki M, Furuta S, Onouchi Y et al (2000) Association studies of 33 single nucleotide polymorphisms (SNPs) in 29 candidate genes for bronchial asthma: positive association a T924C polymorphism in the thromboxane receptor gene. Hum Genet 106(4):440–446

    CAS  PubMed  Google Scholar 

  209. Pertwee RG, Howlett AC, Abood ME et al (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Matsuda LA, Lolait SJ, Brownstein MJ et al (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    CAS  PubMed  Google Scholar 

  211. Devane WA, Hanus L, Breuer A et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    CAS  PubMed  Google Scholar 

  212. Pertwee RG (1999) Pharmacology of cannabinoid receptor ligands. Curr Med Chem 6:635–664

    CAS  PubMed  Google Scholar 

  213. Glass M, Felder CC (1997) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J Neurosci 17:5327–5333

    CAS  PubMed  Google Scholar 

  214. Maneuf YP, Brotchie JM (1997) Paradoxical action of the cannabinoid WIN 55,212–2 in stimulated and basal cyclic AMP accumulation in rat globus pallidus slices. Br J Pharmacol 120:1397–1398

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Calandra B, Portier M, Kernéis A et al (1999) Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor. Eur J Pharmacol 374:445–455

    CAS  PubMed  Google Scholar 

  216. Mechoulam R, Ben-Shabat S, Hanus L et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    CAS  PubMed  Google Scholar 

  217. Sugiura T, Kondo S, Sukagawa A et al (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97

    CAS  PubMed  Google Scholar 

  218. Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG (2007) Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol 150:613–623

    CAS  PubMed Central  PubMed  Google Scholar 

  219. Cascio MG, Gauson LA, Stevenson LA et al (2010) Evidence that the plant cannabinoid cannabigerol is a highly potent α2-adrenoceptor agonist and moderately potent 5HT1A receptor antagonist. Br J Pharmacol 159:129–141

    Google Scholar 

  220. Ryberg E, Larsson N, Sjögren S et al (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Sawzdargo M, Nguyen T, Lee DK et al (1999) Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain Res Mol Brain Res 64:193–198

    CAS  PubMed  Google Scholar 

  222. Kapur A, Zhao P, Sharir H et al (2009) Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. J Biol Chem 284:29817–29827

    CAS  PubMed Central  PubMed  Google Scholar 

  223. Whyte LS, Ryberg E, Sims NA et al (2009) The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci U S A 106:16511–16516

    CAS  PubMed Central  PubMed  Google Scholar 

  224. Henstridge CM, Balenga NA, Ford LA et al (2009) The GPR55 ligand L-α-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. FASEB J 23:183–193

    CAS  PubMed  Google Scholar 

  225. Waldeck-Weiermair M, Zoratti C, Osibow K et al (2008) Integrin clustering enables anandamide-induced Ca2+ signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. J Cell Sci 121:1704–1717

    CAS  PubMed Central  PubMed  Google Scholar 

  226. Noguchi K, Ishii S, Shimizu T (2003) Identification of P2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the edg family. J Biol Chem 278:25600–25606

    CAS  PubMed  Google Scholar 

  227. Lee CW, Rivera R, Gardell S et al (2006) GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem 281:23589–23597

    CAS  PubMed  Google Scholar 

  228. Lauckner JE, Jensen JB, Chen HY et al (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A 105:2699–2704

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Sylantyev S, Jensen TP, Ross RA et al (2013) Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci U S A 110:5193–5198

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Elsohly MA, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78:539–548

    CAS  PubMed  Google Scholar 

  231. Ashton CH (2001) Pharmacology and effects of cannabis: a brief review. Br J Psychiatry 178:101–106

    CAS  PubMed  Google Scholar 

  232. Shire D, Carillon C, Kaghad M et al (1995) An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. J Biol Chem 270:3726–3731

    CAS  PubMed  Google Scholar 

  233. Nicoll G, Davidson S, Shanley L, Hing B, Lear M, McGuffin P, Ross R, MacKenzie A (2012) Allele-specific differences in activity of a novel cannabinoid receptor 1 (CNR1) gene intronic enhancer in hypothalamus, dorsal root ganglia, and hippocampus. J Biol Chem 287:12828–12834

    CAS  PubMed Central  PubMed  Google Scholar 

  234. Gadzicki D, Müller-Vahl K, Stuhrmann M (1999) A frequent polymorphism in the coding exon of the human cannabinoid receptor (CNR1) gene. Mol Cell Probes 13:321–323

    CAS  PubMed  Google Scholar 

  235. Zhang PW, Ishiguro H, Ohtsuki T et al (2010) Human cannabinoid receptor 1: 5′ exons, candidate regulatory regions, polymorphisms, haplotypes and association with polysubstance abuse. Mol Psychiatry 9:916–931

    Google Scholar 

  236. Carrasquer A, Nebane NM, Williams WM et al (2010) Functional consequences of nonsynonymous single nucleotide polymorphisms in the CB2 cannabinoid receptor. Pharmacogenet Genomics 20:157–166

    CAS  PubMed  Google Scholar 

  237. Onaivi ES (2009) Cannabinoid receptors in brain: pharmacogenetics, neuropharmacology, neurotoxicology, and potential therapeutic applications. Int Rev Neurobiol 88:335–369

    CAS  PubMed  Google Scholar 

  238. Kloster E, Saft C, Epplen JT et al (2013) CNR1 variation is associated with the age at onset in Huntington disease. Eur J Med Genet 56:416–419

    PubMed  Google Scholar 

  239. Barrero FJ, Ampuero I, Morales B et al (2005) Depression in Parkinson’s disease is related to a genetic polymorphism of the cannabinoid receptor gene (CNR1). Pharmacogenomics J 5:135–141

    CAS  PubMed  Google Scholar 

  240. Woolmore J, Stone M, Holley S et al (2008) Polymorphisms of the cannabinoid 1 receptor gene and cognitive impairment in multiple sclerosis. Mult Scler 14:177–182

    CAS  PubMed  Google Scholar 

  241. Ramil E, Sánchez AJ, González-Pérez P et al (2010) The cannabinoid receptor 1 gene (CNR1) and multiple sclerosis: an association study in two case-control groups from Spain. Mult Scler 16:139–146

    CAS  PubMed  Google Scholar 

  242. Johns A (2001) Psychiatric effects of cannabis. Br J Psychiatry 178:116–122

    CAS  PubMed  Google Scholar 

  243. Henquet C, Krabbendam L, Spauwen J (2005) Prospective cohort study of cannabis use, predisposition to psychosis, and psychotic symptoms in young people. BMJ 330:11

    PubMed Central  PubMed  Google Scholar 

  244. Leroy S, Griffon N, Bourdel MC et al (2001) Schizophrenia and the cannabinoid receptor type 1 (CB1): association study using a single-base polymorphism in coding exon 1. Am J Med Genet 105:749–752

    CAS  PubMed  Google Scholar 

  245. Onwuameze OE, Nam KW, Epping EA et al (2013) MAPK14 and CNR1 gene variant interactions: effects on brain volume deficits in schizophrenia patients with marijuana misuse. Psychol Med 43:619–631

    CAS  PubMed  Google Scholar 

  246. Martínez-Gras I, Hoenicka J, Ponce G et al (2006) (AAT)n repeat in the cannabinoid receptor gene, CNR1: association with schizophrenia in a Spanish population. Eur Arch Psychiatry Clin Neurosci 256:437–441

    PubMed  Google Scholar 

  247. Ujike H, Takaki M, Nakata K (2002) CNR1, central cannabinoid receptor gene, associated with susceptibility to hebephrenic schizophrenia. Mol Psychiatry 7:515–518

    CAS  PubMed  Google Scholar 

  248. Chavarría-Siles I, Contreras-Rojas J, Hare E et al (2008) Cannabinoid receptor 1 gene (CNR1) and susceptibility to a quantitative phenotype for hebephrenic schizophrenia. Am J Med Genet B Neuropsychiatr Genet 147:279–284

    PubMed  Google Scholar 

  249. Zammit S, Spurlock G, Williams H (2007) Genotype effects of CHRNA7, CNR1 and COMT in schizophrenia: interactions with tobacco and cannabis use. Br J Psychiatry 191:402–407

    PubMed  Google Scholar 

  250. Seifert J, Ossege S, Emrich HM et al (2007) No association of CNR1 gene variations with susceptibility to schizophrenia. Neurosci Lett 426:29–33

    CAS  PubMed  Google Scholar 

  251. Schennach R, Zill P, Obermeier M et al (2012) The CNR1 gene in depression and schizophrenia – is there an association with early improvement and response? Psychiatry Res 196:160. doi:10.1016/j.psychres.2011.11.021

    CAS  PubMed  Google Scholar 

  252. Tsai SJ, Wang YC, Hong CJ (2000) Association study of a cannabinoid receptor gene (CNR1) polymorphism and schizophrenia. Psychiatr Genet 10:149–151

    CAS  PubMed  Google Scholar 

  253. Juhasz G, Chase D, Pegg E et al (2009) CNR1 gene is associated with high neuroticism and low agreeableness and interacts with recent negative life events to predict current depressive symptoms. Neuropsychopharmacology 34:2019–2027

    CAS  PubMed  Google Scholar 

  254. Agrawal A, Nelson EC, Littlefield AK et al (2012) Cannabinoid receptor genotype moderation of the effects of childhood physical abuse on anhedonia and depression. Arch Gen Psychiatry 69:732–740

    CAS  PubMed Central  PubMed  Google Scholar 

  255. Camilleri M, Kolar GJ, Vazquez-Roque MI et al (2013) Cannabinoid receptor 1 gene and irritable bowel syndrome: phenotype and quantitative traits. Am J Physiol Gastrointest Liver Physiol 304:G553–G560

    CAS  PubMed Central  PubMed  Google Scholar 

  256. Monteleone P, Bifulco M, Maina G (2010) Investigation of CNR1 and FAAH endocannabinoid gene polymorphisms in bipolar disorder and major depression. Pharmacol Res 261:400–404

    Google Scholar 

  257. Hartman CA, Hopfer CJ, Haberstick B et al (2009) The association between cannabinoid receptor 1 gene (CNR1) and cannabis dependence symptoms in adolescents and young adults. Drug Alcohol Depend 104:11–16

    CAS  PubMed Central  PubMed  Google Scholar 

  258. Filbey FM, Schacht JP, Myers US (2010) Individual and additive effects of the CNR1 and FAAH genes on brain response to marijuana cues. Neuropsychopharmacology 35:967–975

    CAS  PubMed Central  PubMed  Google Scholar 

  259. Haughey HM, Marshall E, Schacht JP (2008) Marijuana withdrawal and craving: influence of the cannabinoid receptor 1 (CNR1) and fatty acid amide hydrolase (FAAH) genes. Addiction 103:1678–1686

    PubMed Central  PubMed  Google Scholar 

  260. Hopfer CJ, Young SE, Purcell S et al (2006) Cannabis receptor haplotype associated with fewer cannabis dependence symptoms in adolescents. Am J Med Genet B Neuropsychiatr Genet 141B:895–901

    CAS  PubMed Central  PubMed  Google Scholar 

  261. Agrawal A, Wetherill L, Dick DM et al (2009) Evidence for association between polymorphisms in the cannabinoid receptor 1 (CNR1) gene and cannabis dependence. Am J Med Genet B Neuropsychiatr Genet 150B:736–740

    CAS  PubMed Central  PubMed  Google Scholar 

  262. Schacht JP, Hutchison KE, Filbey FM (2012) Associations between cannabinoid receptor-1 (CNR1) variation and hippocampus and amygdala volumes in heavy cannabis users. Neuropsychopharmacology 37:2368–2376

    CAS  PubMed Central  PubMed  Google Scholar 

  263. Lee W, Bergen AW, Swan GE et al (2012) Gender-stratified gene and gene-treatment interactions in smoking cessation. Pharmacogenomics J 12:521–532

    CAS  PubMed Central  PubMed  Google Scholar 

  264. Chen X, Williamson WS, An SS (2008) Cannabinoid receptor 1 gene association with nicotine dependence. Arch Gen Psychiatry 65:816–824

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Schmidt LG, Samochowiec J, Finckh U et al (2002) Association of a CB1 cannabinoid receptor gene (CNR1) polymorphism with severe alcohol dependence. Drug Alcohol Depend 65:221–224

    CAS  PubMed  Google Scholar 

  266. Zuo L, Kranzler HR, Luo X et al (2007) CNR1 variation modulates risk for drug and alcohol dependence. Biol Psychiatry 62:616–626

    CAS  PubMed  Google Scholar 

  267. Marcos M, Pastor I, de la Calle C et al (2012) Cannabinoid receptor 1 gene is associated with alcohol dependence. Alcohol Clin Exp Res 36:267–271

    CAS  PubMed  Google Scholar 

  268. Preuss UW, Koller G, Zill P et al (2003) Alcoholism-related phenotypes and genetic variants of the CB1 receptor. Eur Arch Psychiatry Clin Neurosci 253:275–280

    CAS  PubMed  Google Scholar 

  269. Herman AI, Kranzler HR, Cubells JF (2006) Association study of the CNR1 gene exon 3 alternative promoter region polymorphisms and substance dependence. Am J Med Genet B Neuropsychiatr Genet 141B:499–503

    CAS  PubMed Central  PubMed  Google Scholar 

  270. Benyamina A, Kebir O, Blecha L et al (2011) CNR1 gene polymorphisms in addictive disorders: a systematic review and a meta-analysis. Addict Biol 16:1–6

    CAS  PubMed  Google Scholar 

  271. Zuo L, Kranzler HR, Luo X et al (2009) Interaction between two independent CNR1 variants increases risk for cocaine dependence in European Americans: a replication study in family-based sample and population-based sample. Neuropsychopharmacology 34:1504–1513

    CAS  PubMed Central  PubMed  Google Scholar 

  272. Ballon N, Leroy S, Roy C et al (2006) (AAT)n repeat in the cannabinoid receptor gene (CNR1): association with cocaine addiction in an African-Caribbean population. Pharmacogenomics J 6:126–130

    CAS  PubMed  Google Scholar 

  273. Clarke TK, Bloch PJ, Ambrose-Lanci LM et al (2013) Further evidence for association of polymorphisms in the CNR1 gene with cocaine addiction: confirmation in an independent sample and meta-analysis. Addict Biol 18:702–708

    CAS  PubMed Central  PubMed  Google Scholar 

  274. Proudnikov D, Kroslak T, Sipe JC et al (2010) Association of polymorphisms of the cannabinoid receptor (CNR1) and fatty acid amide hydrolase (FAAH) genes with heroin addiction: impact of long repeats of CNR1. Pharmacogenomics J 10:232–242

    CAS  PubMed  Google Scholar 

  275. Okahisa Y, Kodama M, Takaki M et al (2011) Association study of two cannabinoid receptor genes, CNR1 and CNR2, with methamphetamine dependence. Curr Neuropharmacol 9:183–189

    CAS  PubMed Central  PubMed  Google Scholar 

  276. Li T, Liu X, Zhu ZH et al (2000) No association between (AAT) n repeats in the cannabinoid receptor gene (CNR1) and heroin abuse in a Chinese population. Mol Psychiatry 5:128–130

    PubMed  Google Scholar 

  277. Ponce G, Hoenicka J, Rubio G et al (2003) Association between cannabinoid receptor gene (CNR1) and childhood attention deficit/hyperactivity disorder in Spanish male alcoholic patients. Mol Psychiatry 8:466–467

    CAS  PubMed  Google Scholar 

  278. Ehlers CL, Slutske WS, Lind PA et al (2007) Association between single nucleotide polymorphisms in the cannabinoid receptor gene (CNR1) and impulsivity in southwest California Indians. Twin Res Hum Genet 10:805–811

    PubMed  Google Scholar 

  279. Comings DE, Muhleman D, Gade R et al (1997) Cannabinoid receptor gene (CNR1): association with i.v. drug use. Mol Psychiatry 2:161–168

    CAS  PubMed  Google Scholar 

  280. Maldonado R, Valverde O, Berrendero F (2006) Involvement of the endocannabinoid system in drug addiction (Review) Trends in Neurosci 29:225–232

    Google Scholar 

  281. Park YM, Choi JE, Kang SG et al (2011) Cannabinoid type 1 receptor gene polymorphisms are not associated with olanzapine-induced weight gain. Hum Psychopharmacol 26:332–337

    CAS  PubMed  Google Scholar 

  282. Hamdani N, Tabeze JP, Ramoz N et al (2008) The CNR1 gene as a pharmacogenetic factor for antipsychotics rather than a susceptibility gene for schizophrenia. Eur Neuropsychopharmacol 18:34–40

    CAS  PubMed  Google Scholar 

  283. Tiwari AK, Zai CC, Likhodi O et al (2012) Association study of cannabinoid receptor 1 (CNR1) gene in tardive dyskinesia. Pharmacogenomics J 12:260–266

    CAS  PubMed  Google Scholar 

  284. Mitjans M, Gastó C, Catalán R et al (2012) Genetic variability in the endocannabinoid system and 12-week clinical response to citalopram treatment: the role of the CNR1, CNR2 and FAAH genes. J Psychopharmacol 26:1391–1398

    PubMed  Google Scholar 

  285. Siegfried Z, Kanyas K, Latzer Y et al (2004) Association study of cannabinoid receptor gene (CNR1) alleles and anorexia nervosa: differences between restricting and binging/purging subtypes. Am J Med Genet B Neuropsychiatr Genet 125B:126–130

    CAS  PubMed  Google Scholar 

  286. Monteleone P, Bifulco M, Di Filippo C et al (2009) Association of CNR1 and FAAH endocannabinoid gene polymorphisms with anorexia nervosa and bulimia nervosa: evidence for synergistic effects. Genes Brain Behav 8:728–732

    CAS  PubMed  Google Scholar 

  287. Arias F, Ampuero I, Saqredo O (2009) Lack of association between polymorphisms in cannabinoid receptor gene (CNR1) and fatty acid amide hydroxylase gene (FAAH) and eating disorders in a preliminary study. Phychiatr Genet 19:336

    Google Scholar 

  288. Peeters A, Beckers S, Mertens I et al (2007) The G1422A variant of the cannabinoid receptor gene (CNR1) is associated with abdominal adiposity in obese men. Endocrine 31:138–141

    CAS  PubMed  Google Scholar 

  289. Russo P, Strazzullo P, Cappuccio FP et al (2007) Genetic variations at the endocannabinoid type 1 receptor gene (CNR1) are associated with obesity phenotypes in men. J Clin Endocrinol Metab 92:2382–2386

    CAS  PubMed  Google Scholar 

  290. Jaeger JP, Mattevi VS, Callegari-Jacques SM et al (2008) Cannabinoid type-1 receptor gene polymorphisms are associated with central obesity in a Southern Brazilian population. Dis Markers 25:67–74

    CAS  PubMed Central  PubMed  Google Scholar 

  291. Benzinou M, Chèvre JC, Ward KJ et al (2008) Endocannabinoid receptor 1 gene variations increase risk for obesity and modulate body mass index in European populations. Hum Mol Genet 17:1916–1921

    CAS  PubMed  Google Scholar 

  292. Dinu IR, Popa SG, Moţa M et al (2011) The association of the rs1049353 polymorphism of the CNR1 gene with hypoadiponectinemia. Rom J Morphol Embryol 52:791–795

    CAS  PubMed  Google Scholar 

  293. Mutombo PB, Yamasaki M, Nabika T et al (2012) Cannabinoid receptor 1 (CNR1) 4895 C/T genetic polymorphism was associated with obesity in Japanese men. J Atheroscler Thromb 19:779–785

    CAS  PubMed  Google Scholar 

  294. De Luis DA, González Sagrado M, Aller R et al (2011) Roles of G1359A polymorphism of the cannabinoid receptor gene (CNR1) on weight loss and adipocytokines after a hypocaloric diet. Nutr Hosp 26:317–322

    PubMed  Google Scholar 

  295. Buraczynska M, Wacinski P, Zukowski P et al (2013) Common polymorphism in the cannabinoid type 1 receptor gene (CNR1) is associated with microvascular complications in type 2 diabetes. J Diabetes Complications. doi:10.1016/j.jdiacomp.2013.08.005, pii: S1056-8727(13)00199-2

    Google Scholar 

  296. de Miguel-Yanes JM, Manning AK, Shrader P et al (2011) Variants at the endocannabinoid receptor CB1 gene (CNR1) and insulin sensitivity, type 2 diabetes, and coronary heart disease. Obesity (Silver Spring) 19:2031–2037

    Google Scholar 

  297. Aberle J, Fedderwitz I, Klages N et al (2007) Genetic variation in two proteins of the endocannabinoid system and their influence on body mass index and metabolism under low fat diet. Horm Metab Res 39:395–397

    CAS  PubMed  Google Scholar 

  298. Rossi F, Bellini G, Tolone C et al (2012) The cannabinoid receptor type 2 Q63R variant increases the risk of celiac disease: implication for a novel molecular biomarker and future therapeutic intervention. Pharmacol Res 66:88–94

    CAS  PubMed  Google Scholar 

  299. Sipe JC, Arbour N, Gerber A et al (2005) Reduced endocannabinoid immune modulation by a common cannabinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune disorders. J Leukoc Biol 78:231–238

    CAS  PubMed  Google Scholar 

  300. Coppola N, Zampino R, Bellini G et al (2013) Association between a polymorphism in cannabinoid receptor 2 and severe necroinflammation in patients with chronic hepatitis C. Clin Gastroenterol Hepatol 12(2):334–340, doi:pii: S1542-3565(13)00687-3

    PubMed  Google Scholar 

  301. Rossi F, Bellini G, Alisi A et al (2012) Cannabinoid receptor type 2 functional variant influences liver damage in children with non-alcoholic fatty liver disease. PLoS One 7:e42259. doi:10.1371/journal.pone.0042259

    CAS  PubMed Central  PubMed  Google Scholar 

  302. Karsak M, Cohen-Solal M, Freudenberg J (2005) Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet 14:3389–3396

    CAS  PubMed  Google Scholar 

  303. Karsak M, Malkin I, Toliat MR (2009) The cannabinoid receptor type 2 (CNR2) gene is associated with hand bone strength phenotypes in an ethnically homogeneous family sample. Hum Genet 126:629–636

    CAS  PubMed  Google Scholar 

  304. Bab I, Zimmer A, Melamed E (2009) Cannabinoids and the skeleton: from marijuana to reversal of bone loss. Ann Med 41:560–567

    CAS  PubMed  Google Scholar 

  305. Onaivi ES, Ishiguro H, Gong JP et al (2008) Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: from mice to human subjects. PLoS One 3:e1640

    PubMed Central  PubMed  Google Scholar 

  306. Minocci D, Massei J, Martino A et al (2011) Genetic association between bipolar disorder and 524A>C (Leu133Ile) polymorphism of CNR2 gene, encoding for CB2 cannabinoid receptor. J Affect Disord 134:427–430

    CAS  PubMed  Google Scholar 

  307. Ishiguro H, Onaivi ES, Horiuchi Y et al (2011) Functional polymorphism in the GPR55 gene is associated with anorexia nervosa. Synapse 65:103–108

    CAS  PubMed  Google Scholar 

  308. Samson M, Libert F, Doranz BJ et al (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725

    CAS  PubMed  Google Scholar 

  309. Hall IP, Wheatley A, Christie G et al (1999) Association of CCR5 del 32 with reduced risk of asthma. Lancet 354:1264–1265

    CAS  PubMed  Google Scholar 

  310. Srivastava P, Helms PJ, Stewart D et al (2003) Association of CCR5 Delta 32 with reduced risk of childhood but not adult asthma. Thorax 58:222–226

    CAS  PubMed Central  PubMed  Google Scholar 

  311. Lane J, McLaren PJ, Dorrell L et al (2013) A genome-wide association study of resistance to HIV infection in highly exposed uninfected individuals with hemophilia A. Hum Mol Genet 22:1903–1910

    CAS  PubMed Central  PubMed  Google Scholar 

  312. Bonecchi R, Bianchi G, Bordignon PP et al (1998) Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 187:129–134

    CAS  PubMed Central  PubMed  Google Scholar 

  313. Agrawal DK, Bharadwaj A (2005) Allergic airway inflammation. Curr Allergy Asthma Rep 5:142–148

    CAS  PubMed  Google Scholar 

  314. Umetsu SE, Lee WL, McIntire JJ et al (2005) TIM-1 induces T cell activation and inhibits the development of peripheral tolerance. Clin Immunol 115:S17

    Google Scholar 

  315. Allen M, Heinzmann A, Noguchi E et al (2003) Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nat Genet 35:258–263

    CAS  PubMed  Google Scholar 

  316. Yao TC, Du G, Han L et al (2013) Genome-wide association study of lung function phenotypes in a founder population. J Allergy Clin Immunol. doi:10.1016/j.jaci.2013.06.018.318

    Google Scholar 

  317. Mellado M, Rodriguez-Frade JM, Vila-Coro AJ et al (1999) Chemokine control of HIV-1 infection. Nature 400:723–724

    CAS  PubMed  Google Scholar 

  318. Fernandez EJ, Lolis E (2002) Structure junction, and inhibition of chemokines. Annu Rev Pharmacol Toxicol 42:469–499

    CAS  PubMed  Google Scholar 

  319. Berger EA, Murphy PM, Farber JM (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700

    CAS  PubMed  Google Scholar 

  320. Sheppard HW, Celum C, Michael NL et al (2002) HIV-1 infection in individuals with the CCR5-Delta32/Delta32 genotype: acquisition of syncytium-inducing virus at seroconversion. J Acquir Immune Defic Syndr 29:307–313

    PubMed  Google Scholar 

  321. Smith MW, Dean M, Carrington M et al (1997) Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Science 277:959–965

    CAS  PubMed  Google Scholar 

  322. Smith MW, Dean M, Carrington M et al (1997) CCR5-Delta 32 gene deletion in HIV-1 infected patients. Lancet 350:741

    CAS  PubMed  Google Scholar 

  323. Szalai C, Csaszar A, Czinner A et al (1999) Chemokine receptor CCR2 and CCR5 polymorphisms in children with insulin-dependent diabetes mellitus. Pediatr Res 46:82–84

    CAS  PubMed  Google Scholar 

  324. Smith PD, Meng G, Sellers MT et al (2000) Biological parameters of HIV-1 infection in primary intestinal lymphocytes and macrophages. J Leukoc Biol 68:360–365

    CAS  PubMed  Google Scholar 

  325. Tokizawa S, Shimizu N, Hui-Yu L et al (2000) Infection of mesangial cells with HIV and SIV: identification of GPR1 as a coreceptor. Kidney Int 58:607–617

    CAS  PubMed  Google Scholar 

  326. Michael NL, Louie LG, Rohrbaugh AL et al (1997) The role of CCR5 and CCR2 polymorphisms in HTV-1 transmission and disease progression. Nat Med 3:1160–1162

    CAS  PubMed  Google Scholar 

  327. Zimmermann N, Bernstein JA, Rothenberg ME (1998) Polymorphisms in the human CC chemokine receptor-3 gene. Biochim Biophys Acta 1442:170–176

    CAS  PubMed  Google Scholar 

  328. Kopin AS, McBride EW, Schaffer K et al (2000) CCK receptor polymorphisms: an illustration of emerging themes in pharmacogenomics. Trends Pharmacol Sci 21:346–353

    CAS  PubMed  Google Scholar 

  329. Fukunaga K, Ishii S, Asano K et al (2001) Single nucleotide polymorphism of human platelet-activating factor receptor impairs G-protein activation. J Biol Chem 276:43025–43030

    CAS  PubMed  Google Scholar 

  330. Lares AP, Tu CC, Spencer JV (2013) The human cytomegalovirus US27 gene product enhances cell proliferation and alters cellular gene expression. Virus Res 176:312–320

    CAS  PubMed  Google Scholar 

  331. Gao JL, Murphy PM (1994) Human cytomegalovirus open reading frame US28 encodes a functional beta-chemokine receptor. J Biol Chem 269:28539–28542

    CAS  PubMed  Google Scholar 

  332. Moore PS, Boshoff C, Weiss RA et al (1996) Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 274:1739–1744

    CAS  PubMed  Google Scholar 

  333. Bais C, Santomasso B, Coso O et al (1998) G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391:86–89

    CAS  PubMed  Google Scholar 

  334. Moore PS, Chang Y (2001) Molecular virology of Kaposi’s sarcoma-associated herpesvirus. Philos Trans R Soc Lond B Biol Sci 356:499–516

    CAS  PubMed Central  PubMed  Google Scholar 

  335. Tadagaki K, Tudor D, Gbahou F et al (2012) Human cytomegalovirus-encoded UL33 and UL78 heteromerize with host CCR5 and CXCR4 impairing their HIV coreceptor activity. Blood 119:4908–4918

    CAS  PubMed  Google Scholar 

  336. Pleskoff O, Treboute C, Brelot A et al (1997) Identification of a chemokine receptor encoded by human cytomegalovirus as a cofactor for HIV-1 entry. Science 276:1874–1878

    CAS  PubMed  Google Scholar 

  337. Birkenbach M, Josefsen K, Yalamanchili R et al (1993) Epstein–Barr virus-induced genes—1st lymphocyte-specific G-protein-coupled peptide receptors. J Virol 67:2209–2220

    CAS  PubMed Central  PubMed  Google Scholar 

  338. Couty JP, Gershengorn MC (2005) G-protein-coupled receptors encoded by human herpesviruses. Trends Pharmacol Sci 26:405–411

    CAS  PubMed  Google Scholar 

  339. Gudermann T (2001) Multiple pathways of ERK activation by G protein-coupled receptors. Novartis Found Symp 239:68–84

    CAS  PubMed  Google Scholar 

  340. Schmitz F, Goke MN, Otte JM et al (2001) Cellular expression of CCK-A and CCK- B/gastrin receptors in human gastric mucosa. Regul Pept 102:101–110

    CAS  PubMed  Google Scholar 

  341. Schmidt WE, Schmitz F (2002) Cellular localization of cholecystokinin receptors as the molecular basis of the periperal regulation of acid secretion. Pharmacol Toxicol 91:351–358

    CAS  PubMed  Google Scholar 

  342. Marchal-Victorion S, Vionnet N, Escrieut C et al (2002) Genetic, pharmacological and functional analysis of cholecystokinin-1 and cholecystokinin-2 receptor polymorphism in type 2 diabetes and obese patients. Pharmacogenetics 12:23–30

    CAS  PubMed  Google Scholar 

  343. Rai R, Chandra V, Tewari M et al (2012) Cholecystokinin and gastrin receptors targeting in gastrointestinal cancer. Surg Oncol 21:281–292

    PubMed  Google Scholar 

  344. Coughlin SR (1994) Expanding horizons for receptors coupled to G-proteins—diversity and disease. Curr Opin Cell Biol 6:191–197

    CAS  PubMed  Google Scholar 

  345. Vergnolle N, Bunnett NW, Sharkey KA et al (2001) Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. Nat Med 7:821–826

    CAS  PubMed  Google Scholar 

  346. Griffin CT, Srinivasan Y, Zheng YW et al (2001) A role of thrombin receptor signaling in endothelial cells during embryonic development. Science 293:1666–1670

    CAS  PubMed  Google Scholar 

  347. Yau MK, Liu L, Fairlie DP (2013) Toward drugs for protease-activated receptor 2 (PAR2). J Med Chem 19:7477–7497

    Google Scholar 

  348. Bromberg Y, Rost B (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 35:3823–3835

    CAS  PubMed Central  PubMed  Google Scholar 

  349. Bromberg Y, Overton J, Vaisse C et al (2009) In silico mutagenesis: a case study of the melanocortin 4 receptor. FASEB J 23:3059–3069

    CAS  PubMed Central  PubMed  Google Scholar 

  350. van Boxtel R, Vroling B, Toonen P et al (2011) Systematic generation of in vivo G protein-coupled receptor mutants in the rat. Pharmacogenomics J 11:326–336

    PubMed Central  PubMed  Google Scholar 

  351. Balasubramanian S, Xia Y, Freinkman E, Gerstein M (2005) Sequence variation in G-protein-coupled receptors: analysis of single nucleotide polymorphisms. Nucleic Acids Res 33:1710–1721

    CAS  PubMed Central  PubMed  Google Scholar 

  352. Spiegel AM (1996) Defects in G protein-coupled signal transduction in human disease. Annu Rev Physiol 58:143–170

    CAS  PubMed  Google Scholar 

  353. Spiegel AM, Weinstein LS (2004) Inherited diseases involving G proteins and G protein-coupled receptors. Annu Rev Med 55:27–39

    CAS  PubMed  Google Scholar 

  354. Horn F, Bywater R, Krause G et al (1998) The interaction of class B G protein-coupled receptors with their hormones. Receptors Channels 5:305–314

    CAS  PubMed  Google Scholar 

  355. Horn F, Vriend G (1998) G protein-coupled receptors in silico. J Mol Med 76:464–468

    CAS  PubMed  Google Scholar 

  356. Akhter SA, D’Souza KM, Petrashevskaya NN et al (2006) Myocardial beta1-adrenergic receptor polymorphisms affect functional recovery after ischemic injury. Am J Physiol Heart Circ Physiol 290:H1427–H1432

    CAS  PubMed  Google Scholar 

  357. Takei K, McPherson PS, Schmid SL et al (1995) Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature 374:186–190

    CAS  PubMed  Google Scholar 

  358. Krueger KM, Daaka Y, Pitcher JA et al (1997) The role of sequestration in G protein-coupled receptor resensitization. Regulation of beta2-adrenergic receptor dephosphorylation by vesicular acidification. J Biol Chem 272:5–8

    CAS  PubMed  Google Scholar 

  359. Roth A, Kreienkamp HJ, Meyerhof W et al (1997) Phosphorylation of four amino acid residues in the carboxyl terminus of the rat somatostatin receptor subtype 3 is crucial for its desensitization and internalization. J Biol Chem 272:23769–23774

    CAS  PubMed  Google Scholar 

  360. Barak LS, Tiberi M, Freedman NJ et al (1994) A highly conserved tyrosine residue in G protein-coupled receptors is required for agonist-mediated beta 2-adrenergic receptor sequestration. J Biol Chem 269:2790–2795

    CAS  PubMed  Google Scholar 

  361. Binder A, Garcia E, Wallace C et al (2006) Haplotypes of the beta-2 adrenergic receptor associate with high diastolic blood pressure in the Caerphilly prospective study. J Hypertens 24:471–477

    CAS  PubMed  Google Scholar 

  362. Sander T, Berlin W, Gscheidel N et al (2000) Genetic variation of the human mu-opioid receptor and susceptibility to idiopathic absence epilepsy. Epilepsy Res 39:57–61

    CAS  PubMed  Google Scholar 

  363. Seeman P, Nam D, Ulpian C et al (2000) New dopamine receptor, D2 (Longer), with unique TG splice site, in human brain. Brain Res Mol 76:132–141

    CAS  Google Scholar 

  364. Thompson J, Thomas N, Singleton A et al (1997) D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics 7:479–484

    CAS  PubMed  Google Scholar 

  365. Blum K, Braverman ER, Wu S et al (1997) Association of polymorphisms of dopamine D-2 receptor (DRD2), and dopamine transporter (DAT(1)) genes with schizoid/avoidant behaviors (SAB). Mol Psychiatry 2:239–246

    CAS  PubMed  Google Scholar 

  366. Blum K, Sheridan PJ, Wood RC et al (1996) The D2 dopamine receptor gene as a determinant of reward deficiency syndrome. J R Soc Med 89:396–400

    CAS  PubMed Central  PubMed  Google Scholar 

  367. Comings DE, Rosenthal RJ, Lesieur HR et al (1996) A study of the dopamine D2 receptor gene in pathological gambling. Pharmacogenetics 6:223–234

    CAS  PubMed  Google Scholar 

  368. Cravchik A, Sibley DR, Gejman PV (1999) Analysis of neuroleptic binding affinities and potencies for the different human D2 dopamine receptor missense variants. Pharmacogenetics 9:17–23

    CAS  PubMed  Google Scholar 

  369. Xing Q, Qian X, Li H et al (2006) The relationship between the therapeutic response to risperidone and the dopamine D2 receptor polymorphism in Chinese schizophrenia patients. Int J Neuropsychopharmacol 10:631–637

    PubMed  Google Scholar 

  370. Dikeos DG, Papadimitriou GN, Avramopoulos D et al (1999) Association between the dopamine D3 receptor gene locus (DRD3) and unipolar affective disorder. Psychiatr Genet 9:189–195

    CAS  PubMed  Google Scholar 

  371. Schumann G, Benedetti F, Voderholzer U et al (2001) Antidepressive response to sleep deprivation in unipolar depression is not associated with dopamine D3 receptor genotype. Neuropsychobiology 43:127–130

    CAS  PubMed  Google Scholar 

  372. Comings DE, Gonzalez N, Wu S et al (1999) Studies of the 48 bp repeat polymorphism of the DRD4 gene in impulsive, compulsive, addictive behaviors: Tourette syndrome, ADHD, pathological gambling, and substance abuse. Am J Med Genet 88:358–368

    CAS  PubMed  Google Scholar 

  373. Cravchik A, Gejman PV (1999) Functional analysis of the human D5 dopamine receptor missense and nonsense variants: differences in dopamine binding affinities. Pharmacogenetics 9:199–206

    CAS  PubMed  Google Scholar 

  374. Nacmias B, Ricca V, Tedde A et al (1999) 5-HT2A receptor gene polymorphisms in anorexia nervosa and bulimia nervosa. Neurosci Lett 277:134–136

    CAS  PubMed  Google Scholar 

  375. Ricca V, Nacmias B, Cellini E et al (2002) 5-HT2A receptor gene polymorphism and eating disorders. Neurosci Lett 323:105–108

    CAS  PubMed  Google Scholar 

  376. Fuentes JA, Lauzurica N, Hurtado A et al (2004) Analysis of the −1438 G/A polymorphism of the 5-HT2A serotonin receptor gene in bulimia nervosa patients with or without a history of anorexia nervosa. Psychiatr Genet 14:107–109

    CAS  PubMed  Google Scholar 

  377. Sasaki Y, Ihara K, Ahmed S et al (2000) Lack of association between atopic asthma and polymorphisms of the histamine H1 receptor, histamine H2 receptor, and histamine N-methyltransferase genes. Immunogenetics 51:238–240

    CAS  PubMed  Google Scholar 

  378. Mancama D, Arranz MJ, Munro J et al (2002) Investigation of promoter variants of the histamine 1 and 2 receptors in schizophrenia and clozapine response. Neurosci Lett 333:207–211

    CAS  PubMed  Google Scholar 

  379. Hong CJ, Lin CH, Yu YW et al (2002) Genetic variant of the histamine-1 receptor (glu349asp) and body weight change during clozapine treatment. Psychiatr Genet 12:169–171

    PubMed  Google Scholar 

  380. Orange PR, Heath PR, Wright SR et al (1996) Individuals with schizophrenia have an increased incidence of the H2R649G allele for the histamine H2 receptor gene. Mol Psychiatry 1:466–469

    CAS  PubMed  Google Scholar 

  381. Ito C, Morisset S, Krebs MO et al (2000) Histamine H2 receptor gene variants: lack of association with schizophrenia. Mol Psychiatry 5:159–164

    CAS  PubMed  Google Scholar 

  382. Morisset S, Rouleau A, Ligneau X et al (2000) High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature 408:860–864

    CAS  PubMed  Google Scholar 

  383. Schwartz JC, Morisset S, Rouleau A et al (2003) Therapeutic implications of constitutive activity of receptors: the example of the histamine H3 receptor. J Neural Transm Suppl 1–16

    Google Scholar 

  384. Passani MB, Lin JS, Hancock A et al (2004) The histamine H3 receptor as a novel therapeutic target for cognitive and sleep disorders. Trends Pharmacol Sci 25:618–625

    CAS  PubMed  Google Scholar 

  385. Pillai SG, Cousens DJ, Barnes AA et al (2004) A coding polymorphism in the CysLT2 receptor with reduced affinity to LTD is associated with asthma. Pharmacogenetics 14:627–633

    CAS  PubMed  Google Scholar 

  386. Fukai H, Ogasawara Y, Migita O et al (2004) Association between a polymorphism in cysteinyl leukotriene receptor 2 on chromosome 13q14 and atopic asthma. Pharmacogenetics 14:683–690

    CAS  PubMed  Google Scholar 

  387. Capra V, Thompson MD, Cole DEC et al (2007) Cysteinyl-leukotrienes and their receptors in health and disease. Med Res Rev 27:427–469

    Google Scholar 

  388. Thompson MD, Burnham WM, Cole DE (2005) The G protein-coupled receptors: pharmacogenetics and disease. Crit Rev Clin Lab Sci 42:311–392

    CAS  PubMed  Google Scholar 

  389. Kim SH, Ye YM, Hur GY et al (2007) Cys-LTR1 promoter polymorphism and requirement for leukotriene receptor antagonist in aspirin-intolerant asthma patients. Pharmacogenomics 8:1143–1150

    CAS  PubMed  Google Scholar 

  390. Thompson MD, Takasaki J, Capra V et al (2006) G-protein-coupled receptors and asthma endophenotypes: the cysteinyl leukotriene system in perspective. Mol Diagn Ther 10:353–366

    CAS  PubMed  Google Scholar 

  391. Bondy B, Baghai TC, Zill P et al (2005) Genetic variants in the angiotensin I-converting-enzyme (ACE) and angiotensin II receptor (AT1) gene and clinical outcome in depression. Prog Neuropsychopharmacol Biol Psychiatry 29:1094–1099

    CAS  PubMed  Google Scholar 

  392. Baudin B (2005) Polymorphism in angiotensin II receptor genes and hypertension. Exp Physiol 90:277–282

    CAS  PubMed  Google Scholar 

  393. Nishikino M, Matsunaga T, Yasuda K et al (2006) Genetic variation in the renin–angiotensin system and autonomic nervous system function in young healthy Japanese subjects. J Clin Endocrinol Metab 91:4676–4681

    CAS  PubMed  Google Scholar 

  394. Rubattu S, Di AE, Stanzione R et al (2004) Gene polymorphisms of the renin–angiotensin–aldosterone system and the risk of ischemic stroke: a role of the A1166C/AT1 gene variant. J Hypertens 22:2129–2134

    CAS  PubMed  Google Scholar 

  395. Kedzierski RM, Yanagisawa M (2001) Endothelin system: the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol 41:851–876

    CAS  PubMed  Google Scholar 

  396. Tanaka C, Kamide K, Takiuchi S et al (2004) Evaluation of the Lys198Asn and −134delA genetic polymorphisms of the endothelin-1 gene. Hypertens Res 27:367–371

    CAS  PubMed  Google Scholar 

  397. Colombo MG, Ciofini E, Paradossi U et al (2006) ET-1 Lys198Asn and ET(A) receptor H323H polymorphisms in heart failure. A case–control study. Cardiology 105:246–252

    CAS  PubMed  Google Scholar 

  398. Kozak M, Izakovicova HL, Krivan L et al (2004) Endothelin-1 gene polymorphism in patients with malignant arrhythmias. J Cardiovasc Pharmacol 44:S92–S95

    CAS  PubMed  Google Scholar 

  399. Herrmann S, Schmidt-Petersen K, Pfeifer J et al (2001) A polymorphism in the endothelin-A receptor gene predicts survival in patients with idiopathic dilated cardiomyopathy. Eur Heart J 22:1948–1953

    CAS  PubMed  Google Scholar 

  400. Telgmann R, Harb BA, Ozcelik C et al (2007) The G-231A polymorphism in the endothelin-A receptor gene is associated with lower aortic pressure in patients with dilated cardiomyopathy. Am J Hypertens 20:32–37

    CAS  PubMed  Google Scholar 

  401. Ormezzano O, Poirier O, Mallion JM et al (2005) A polymorphism in the endothelin-receptor gene is linked to baroreflex sensitivity. J Hypertens 23:2019–2026

    CAS  PubMed  Google Scholar 

  402. Nicaud V, Poirier O, Behague I et al (1999) Polymorphisms of the endothelin-A and -B receptor genes in relation to blood pressure and myocardial infarction: the Etude Cas- Temoins sur l’Infarctus du Myocarde (ECTIM) Study. Am J Hypertens 12:304–310

    CAS  PubMed  Google Scholar 

  403. Tiret L, Poirier O, Hallet V et al (1999) The Lys198Asn polymorphism in the endothelin-1 gene is associated with blood pressure in overweight people. Hypertension 33:1169–1174

    CAS  PubMed  Google Scholar 

  404. Barden AE, Herbison CE, Beilin LJ et al (2001) Association between the endothelin-1 gene Lys198Asn polymorphism blood pressure and plasma endothelin-1 levels in normal and pre-eclamptic pregnancy. J Hypertens 19:1775–1782

    CAS  PubMed  Google Scholar 

  405. Charron P, Tesson F, Poirier O et al (1999) Identification of a genetic risk factor for idiopathic dilated cardiomyopathy. Involvement of a polymorphism in the endothelin receptor type A gene. CARDIGENE group. Eur Heart J 20:1587–1591

    CAS  PubMed  Google Scholar 

  406. Pierzchalska M, Szabo Z, Sanak M et al (2003) Deficient prostaglandin E-2 production by bronchial fibroblasts of asthmatic patients, with special reference to aspirin-induced asthma. J Allergy Clin Immunol 111:1041–1048

    CAS  PubMed  Google Scholar 

  407. Sanz C, Isidoro-Garcia M, Davila I et al (2006) Promoter genetic variants of prostanoid DP receptor (PTGDR) gene in patients with asthma. Allergy 61:543–548

    CAS  PubMed  Google Scholar 

  408. Hsu SC, Chen LC, Kuo ML et al (2002) Novel SNPs in a candidate gene, CRTH2, for allergic diseases. Genes Immun 3:114–116

    CAS  PubMed  Google Scholar 

  409. Gambelunghe G, Ghaderi M, Gharizadeh B et al (2004) Lack of association of human chemokine receptor gene polymorphisms CCR2–64I and CCR5-Delta32 with autoimmune Addison’s disease. Eur J Immunogenet 31:73–76

    CAS  PubMed  Google Scholar 

  410. Dean M, Carrington M, Winkler C et al (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273:1856–1862

    CAS  PubMed  Google Scholar 

  411. Thio CL, Astemborski J, Bashirova A et al (2007) Genetic protection against hepatitis B virus conferred by CCR5Delta32: evidence that CCR5 contributes to viral persistence. J Virol 81:441–445

    CAS  PubMed Central  PubMed  Google Scholar 

  412. Ahn SH, Kim DY, Chang HY et al (2006) Association of genetic variations in CCR5 and its ligand, RANTES with clearance of hepatitis B virus in Korea. J Med Virol 78:1564–1571

    CAS  PubMed  Google Scholar 

  413. Faure S, Meyer L, Costagliola D et al (2000) Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX3CR1. Science 287:2274–2277

    CAS  PubMed  Google Scholar 

  414. Janicic N, Pausova Z, Cole DEC et al (1995) Insertion of an Alu sequence in the Ca2+-sensing receptor gene in familial hypocalciuric hypercalcemia and neo- natal severe hyperparathyroidism. Am J Hum Genet 56:880–886

    CAS  PubMed Central  PubMed  Google Scholar 

  415. Cole DEC, Janicic N, Salisbury SR et al (1997) Neonatal severe hyperparathyroidism, secondary hyperparathyroidism, and familial hypocalciuric hypercalcemia: multiple different phenotypes associated with an inactivating alu insertion mutation of the calcium-sensing receptor gene. Am J Med Genet 71:202–210

    CAS  PubMed  Google Scholar 

  416. Lienhardt A, Bai M, Lagarde JP et al (2001) Activating mutations of the calcium-sensing receptor: management of hypocalcemia. J Clin Endocrinol Metab 86:5313–5323

    CAS  PubMed  Google Scholar 

  417. Hendy GN, Minutti C, Canaff L et al (2003) Recurrent familial hypocalcemia due to germline mosaicism for an activating mutation of the calcium-sensing receptor gene. J Clin Endocrinol Metab 88:3674–3681

    CAS  PubMed  Google Scholar 

  418. Ray K, Hauschild BC, Steinbach PJ et al (1999) Identification of the cysteine residues in the amino-terminal extracellular domain of the human Ca2+ receptor critical for dimerization—implications for function of monomeric Ca2+ receptor. J Biol Chem 274:27642–27650

    CAS  PubMed  Google Scholar 

  419. Pidasheva S, D’Souza-Li L, Canaff L et al (2004) CASRdb: calcium-sensing receptor locus-specific database for mutations causing familial (benign) hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat 24:107–111

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ontario Brain Institute (OBI)—Eplink: The OBI Epilepsy Project; the Scottish Rite Charitable Foundation of Canada; the National Science and Engineering Research Council (NSERC); the Dairy Farmers of Canada (DFC); the Canadian Institutes of Health Research (CIHR); Epilepsy Canada; and an International Scientific Cooperation grant between the Region of Lombardia, Italy and Canada (ID 16755). We thank Dr. Craig Behnke for permission to adapt the image presented in Figs. 1 and 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miles D. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thompson, M.D. et al. (2014). Pharmacogenetics of the G Protein-Coupled Receptors. In: Yan, Q. (eds) Pharmacogenomics in Drug Discovery and Development. Methods in Molecular Biology, vol 1175. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0956-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0956-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0955-1

  • Online ISBN: 978-1-4939-0956-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics