Skip to main content

Pharmacogenomics in Children

  • Protocol
  • First Online:
Pharmacogenomics in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1175))

Abstract

Historically genetics has not been considered when prescribing drugs for children. However, it is clear that genetics are not only an important determinant of disease in children but also of drug response for many important drugs that are core agents used in the therapy of common problems in children. Advances in therapy and in the ethical construct of children’s research have made pharmacogenomic assessment for children much easier to pursue. It is likely that pharmacogenomics will become part of the therapeutic decision making process for children, notably in areas such as childhood cancer where the benefits and risks of therapy are considerable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knox W (1958) Sir Archibald Garrod’s inborn errors of metabolism. Am J Hum Genet 10:3–32

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Evans D, Manley K, McKusick V (1960) Genetic control of isoniazid metabolism in man. Br Med J 5197:485–491

    Google Scholar 

  3. Choonara I, Rieder MJ (2002) Drug toxicity and adverse drug reactions in children—a brief historical Review. Paediatr Perinat Drug Ther 5:12–18

    Google Scholar 

  4. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE (2003) Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med 349:1157–1167

    CAS  PubMed  Google Scholar 

  5. Norbert PW, Roses AD (2003) Pharmacogenetics and pharmacogenomics: recent developments, their clinical relevance and some ethical, social, and legal implications. J Mol Med 81:135–140

    PubMed  Google Scholar 

  6. Avard D, Silverstein T, Sillon G, Joly Y (2009) Researchers’ perceptions of the ethical implications of pharmacogenomics research with children. Public Health Genomics 12:191–201

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Rieder MJ, Matsui DM, MacLeod S (2003) Myths and challenges—drug utilization for Canadian children. Paediatr Child Health 8(Suppl A):7

    Google Scholar 

  8. Castro-Pastrana LI, Carleton B (2011) Improving drug safety: need for more efficient clinical translation of pharmacovigilance knowledge. J Popul Ther Clin Pharmacol 11:e76–e88

    Google Scholar 

  9. Kimland E, Odlind V (2012) Off-label drug use in pediatric patients. Clin Pharmacol Ther 91:796–801

    CAS  PubMed  Google Scholar 

  10. Rieder M (2010) If children ruled the pharmaceutical industry: the need for pediatric formulations. Drug News Perspect 23:458–464

    PubMed  Google Scholar 

  11. Hawcutt DB, Thompson B, Smyth R, Pirmohamed M (2013) Paediatric pharmacogenomics: an overview. Arch Dis Child 98:232–237

    PubMed  Google Scholar 

  12. Weinshilboum RM, Raymond FA, Pazmiño PA (1978) Human erythrocyte thiopurine methyltransferase: radiochemical microassay and biochemical properties. Clin Chim Acta 5:323–333

    Google Scholar 

  13. Weinshilboum RM, Sladek SL (1980) Mercaptopurine pharmacogenetics: mongenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 32:651–662

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Lennard L, Lilleyman JS, Van Loon J, Weinshilboum RM (1990) Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 336:225–229

    CAS  PubMed  Google Scholar 

  15. McLeod HL, Krynetski EY, Relling MV, Evans WE (2000) Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 14:567–572

    CAS  PubMed  Google Scholar 

  16. Bomgaars L, McLeod HL (2005) Pharmaco-genetics and pediatric cancer. Cancer J 11:314–323

    CAS  PubMed  Google Scholar 

  17. Relling MV, Rubnitz JE, Rivera GK (1999) High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet 354:34–39

    CAS  PubMed  Google Scholar 

  18. Thomsen J, Schroder H, Kristinsson J (1999) Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells. Cancer 86:1080–1086

    CAS  Google Scholar 

  19. Adam de Beaumais T, Jacqz-Aigrain E (2012) Pharmacogenetic determinants of mercaptopurine disposition in children with acute lymphoblastic leukemia. Eur J Clin Pharmacol 68:1233–1242

    CAS  PubMed  Google Scholar 

  20. Dorababu P, Naushad SM, Linga VG (2012) Genetic variants of thiopurine and folate metabolic pathways determine 6-MP-mediated hematological toxicity in childhood ALL. Pharmacogenomics 13:1001–1008

    CAS  PubMed  Google Scholar 

  21. Mazor Y, Koifman E, Elkin H (2013) Risk factors for serious adverse drug reactions to thiopurines in patients with Crohn’s Disease. Curr Drug Saf 8:181–185

    CAS  PubMed  Google Scholar 

  22. Brunton L (1888) On the use of codeine to relieve pain in abdominal disease. BMJ 1:1213–1214

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Eddy NB, Friebel H, Hahn KJ, Halback H (1969) Codeine and its alternatives for pain and cough relief. 5. Discussion and summary. Bull World Health Organ 40:721–730

    CAS  PubMed Central  PubMed  Google Scholar 

  24. World Health Organization (1998) Cancer pain relief and palliative care in children. World Health Organization, Geneva

    Google Scholar 

  25. Desmeules J, Gascon MP, Dayer P et al (1991) Impact of environmental and genetic factors on codeine analgesia. Eur J Clin Pharmacol 41:23–26

    CAS  PubMed  Google Scholar 

  26. Sindrup S, Brosen K (1995) The pharmacogenetics of codeine hypoalgesia. Pharmacogenetics 5:335–346

    CAS  PubMed  Google Scholar 

  27. Madadi P, Koren G (2008) Pharmacogenetic insights into codeine analgesia: implications to pediatric codeine use. Pharmacogenomics 9:1267–1284

    PubMed  Google Scholar 

  28. Von Muhlendahl KE, Scherf-Rahne B, Krienke EG, Baukloh G (1976) Codeine intoxication in childhood. Lancet 7980:303–305

    Google Scholar 

  29. Koren G, Cairns J, Citayat D et al (2006) Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 368:704

    PubMed  Google Scholar 

  30. Goucke CR, Hackett JP, Ilett KF (1994) Concentrations of morphine, morphine-6-glucuronide and morphine-3-glucuronide in serum and cerebrospinal fluid following morphine administration to patients with morphine-resistant pain. Pain 56:145–149

    CAS  PubMed  Google Scholar 

  31. PheNeafsey P, Ginsberg G, Hattis D, Sonawane B (2009) Genetic polymorphism in cytochrome P450 2D6 (CYP2D6): population distribution of CYP2D6 activity. J Toxicol Environ Health B Crit Rev 12:334–336

    Google Scholar 

  32. Crews KR, Gaedigk A, Dunnenberger HM et al (2012) Clinical Pharmacogenetics Implememntation Consortrium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin Pharmacol Ther 91:321–326

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Bernard S, Neville KA, Nguyen AT, Flockhart DA (2006) Interethnic differences in genetic polymorphisms of CYP2D6 in the U.S. population: clinical implications. Oncologist 11:126–135

    CAS  PubMed  Google Scholar 

  34. The LK, Bertilsson L (2012) Pharmacogenomics of CYP2D6: molecular genetics, interethnic differences and clinical importance. Drug Metab Pharmacokinet 27:55–67

    Google Scholar 

  35. Madadi P, Shirazi F, Walter FG, Koren G (2008) Establishing causality of CNS depression in breastfed infants following maternal codeine use. Paediatr Drugs 10:399–404

    PubMed  Google Scholar 

  36. Ciszkowski C, Madadi P, Phillips MS et al (2009) Codeine ultrarapid-metabolism genotype and postopertative death. N Engl J Med 361:827–828

    CAS  PubMed  Google Scholar 

  37. Kelly LE, Rieder M, van den Anker J et al (2012) More codeine fatalities after tonsillectomy in North American children. Pediatrics 129:e1343–e1347

    PubMed  Google Scholar 

  38. Food and Drug Administration (2012) Safety review update of codeine use in children; new Boxed Warning and Contraindication on use after tonsillectomy and/or adenoidectomy. Drug Saf Commun. http://www.fda.gov/Drugs/DrugSafety/ucm339112.htm

  39. Poulsen L, Brosen K, Arendt-Neilson L et al (1996) Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur J Clin Pharmacol 51:289–295

    CAS  PubMed  Google Scholar 

  40. Friedrichsdorf SJ, Nugent AP, Strobl AQ (2013) Codeine-associated pediatric deaths despite using recommended dosing guidelines: three case reports. J Opioid Manag 9:151–155

    PubMed  Google Scholar 

  41. Lehrnbecher T, Phillips R, Alexander S et al (2012) International Pediatric Fever and Neutropenia Guideline Panel. Guideline for the management of fever and neutropenia in children with cancer and/or undergoing hematopoietic stem-cell transplantation. J Clin Oncol 30:4427–4438

    PubMed  Google Scholar 

  42. Rosoff P (2006) The two-edged sword of curing childhood cancer. N Engl J Med 355:1522–1523

    CAS  PubMed  Google Scholar 

  43. Rieder MJ, Canadian Paediatric Society, Drug Therapy and Hazardous Substances Committee (2011) Drug research and treatment for children in Canada: a challenge. Paediatr Child Health 16:560–561

    PubMed Central  PubMed  Google Scholar 

  44. Hudson MM, Neglia JP, Woods WG et al (2012) Lessons from the past: opportunities to improve childhood cancer survivor care through outcomes investigation of historical therapeutic approaches for pediatric hematological malignancies. Pediatr Blood Cancer 58:334–343

    PubMed Central  PubMed  Google Scholar 

  45. Turner M, Gagnon D, Lagace M, Gagnon I (2013) Effect of treatment for paediatric cancers on balance: what do we know? A review of the literature. Eur J Cancer Care (Engl) 22:3–11

    CAS  Google Scholar 

  46. Russell HV, Panchal J, Vonville H, Franzini L, Swint JM (2013) Economic evaluation of pediatric cancer treatment: a systematic literature review. Pediatrics 131:e273–e287

    PubMed  Google Scholar 

  47. Fakhry H, Goldenberg M, Sayer G et al (2013) Health-related quality of life in childhood cancer. J Dev Behav Pediatr 34:419–440

    PubMed  Google Scholar 

  48. Mitchell AA, Lacouture PG, Sheehan JE, Kauffman RE, Shapiro S (1988) Adverse drug reactions in children leading to hospital admission. Pediatr 82:24–29

    CAS  Google Scholar 

  49. Oeffinger KC, Mertens AC, Sklar CA et al (2006) Childhood Cancer Survivor Study. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 355:1572–1582

    CAS  PubMed  Google Scholar 

  50. Jabbour E, Kantarjian H (2012) Chronic myeloid leukemia: 2012 update on diagnosis, monitoring and management. Am J Hematol 87:1037–1045

    CAS  PubMed  Google Scholar 

  51. Bhojwani D, Howard SC, Pui CH (2009) High-risk childhood acute lymphoblastic leukemia. Clin Lymphoma Myeloma 9(Suppl 3):S222–S230

    PubMed Central  PubMed  Google Scholar 

  52. Rieder M (2012) New ways to detect adverse drug reactions in pediatrics. Pediatr Clin North Am 59:1071–1092

    PubMed  Google Scholar 

  53. Ross JD, Visscher H, Rassekh SR et al (2011) Pharmacogenomics of serious adverse drug reactions in pediatric oncology. J Popul Ther Clin Pharmacol 18:e134–e151

    PubMed  Google Scholar 

  54. Chen N, Aleska K, Woodland C, Rieder MJ, Koren G (2006) Ontogeny of drug elimination by the human kidney. Pediatr Nephrol 21:160–168

    PubMed  Google Scholar 

  55. Macciò A, Madeddu C (2013) Cisplatin: an old drug with a newfound efficacy—from mechanisms of action to cytotoxicity. Expert Opin Pharmacother 14:1839–1857

    PubMed  Google Scholar 

  56. Rybak LP, Mukherjea D, Jajoo S, Ramkumar V (2009) Cisplatin ototoxicity and protection: clinical and experimental studies. Tohoku J Exp Med 219:177–186

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Brock PR, Knight KR, Freyer DR et al (2012) Platinum-induced ototoxicity in children: a consensus review on mechanisms, predisposition, and protection, including a New International Society of Pediatric Oncology Boston Ototoxicity Scale. J Clin Oncol 30:2408–2417

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Langer T, Am Zehnhoff-Dinnesen A, Radtke S, Meitert J, Zolk O (2013) Understanding platinum-induced ototoxicity. Trends Pharmacol Sci 34:458–469

    CAS  PubMed  Google Scholar 

  59. Ross CJ, Katzov-Eckert H, Dubé MP et al (2009) CPNDS Consortium. Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet 41:1345–1349

    CAS  PubMed  Google Scholar 

  60. Pussegoda K, Ross CH, Visscher H et al (2013) The CPNDS Consortium replication of TPMT and ABCC3 genetic variants highly associated with cisplatin-induced hearing loss in children. Clin Pharmacol Ther 94:243–251

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Yang JJ, Lim JY, Huang J et al (2013) The role of inherited TPMT and COMT genetic variation in cisplatin-induced ototoxicity in children with cancer. Clin Pharmacol Ther 94:252–259

    CAS  PubMed  Google Scholar 

  62. Dionne F, Mitton C, Rassekh R et al (2012) Economic impact of a genetic test for cisplatin-induced ototoxicity. Pharmaco-genomics J 12:205–213

    CAS  Google Scholar 

  63. Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741

    CAS  PubMed  Google Scholar 

  64. van Dalen EC, Raphaël MF, Caron HN, Kremer LC (2011) Treatment including anthracyclines versus treatment not including anthracyclines for childhood cancer. Cochrane Database Syst Rev 1:CD006647

    Google Scholar 

  65. Kucharska W, Negrusz-Kawecka M, Gromkowska M (2012) Cardiotoxicity of oncological treatment in children. Adv Clin Exp Med 2:281–288

    Google Scholar 

  66. Harake D, Franco VI, Henkel JM, Miller TL, Lipshultz SE (2012) Cardiotoxicity in childhood cancer survivors: strategies for prevention and management. Future Cardiol 8:647–670

    CAS  PubMed  Google Scholar 

  67. de Ville de Goyet M, Moniotte S, Brichard B (2012) Cardiotoxicity of childhood cancer treatment: update and current knowledge on long-term follow-up. Pediatr Hematol Oncol 29:395–414

    PubMed  Google Scholar 

  68. Zerra P, Cochran TR, Franco VI, Lipshultz SE (2013) An expert opinion of pharmacologic approaches to reducing the cardiotoxicity of childhood acute lymphoblastic leukemia therapies. Expert Opin Pharmacother 14:1497–1513

    CAS  PubMed  Google Scholar 

  69. Visscher H, Ross CJ, Rassekh SR et al (2012) Canadian Pharmacogenomics Network for Drug Safety Consortium. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J Clin Oncol 30:1422–1428

    PubMed  Google Scholar 

  70. Visscher H, Ross CJ, Rassekh SR et al (2013) CPNDS Consortium. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr Blood Cancer 60:1375–1381

    CAS  PubMed  Google Scholar 

  71. Dechant KL, Brodgden RN, Pilkington T, Faulds D (1991) Ifosfamide/mesna. A review of its antineoplastic activity, pharmacokinetic properties and therapeutic efficacy in cancer. Drugs 42:428–467

    CAS  PubMed  Google Scholar 

  72. Johnstone EC, Lind MJ, Griffin MJ, Boddy AV (2000) Ifosfamide metabolism and DNA damage in tumour and peripheral blood lymphocytes of breast cancer patients. Cancer Chemother Pharmacol 46:433–441

    CAS  PubMed  Google Scholar 

  73. Skinner R, Pearson ADJ, English MW et al (1996) Risk factors for ifosfamide nephrotoxicity in children. Lancet 348:578–580

    CAS  PubMed  Google Scholar 

  74. Loebstein R, Koren G (1998) Ifosfamide-induced nephrotoxicity in children: critical review of predictive risk factors. Pediatr 101:E8–E12

    CAS  Google Scholar 

  75. Skinner R (2003) Chronic ifosfamide nephrotoxicity in children. Med Pediatr Oncol 41:190–197

    CAS  PubMed  Google Scholar 

  76. Dubourg L, Michoudet C, Cochat P, Baverel G (2001) Human kidney tubules detoxify chloroactetaldehyde, a presumed nephrotoxic metabolite of ifsofamide. J Am Soc Nephrol 12:1615–1623

    CAS  PubMed  Google Scholar 

  77. Aleksa K, Ito S, Koren G (2004) Renal-tubule metabolism of ifosfamide to the nephrotoxic chloroacetaldehyde: pharmacokinetic modeling for estimation of intracellular levels. J Lab Clin Med 143:159–162

    CAS  PubMed  Google Scholar 

  78. Chen N, Aleska K, Woodland C, Rieder MJ, Koren G (2007) The effect of N-acetylcysteine on ifosfamide-induced toxicity; in vitro studies in renal tubular cells. Transl Res 150:51–57

    CAS  PubMed  Google Scholar 

  79. Chen N, Aleska K, Woodland C, Rieder MJ, Koren G (2007) Prevention of ifosfamide nephrotoxicity by N-acetylcysteine; clinical pharmacokinetic considerations. Can J Clin Pharmacol 14:e246–e250

    PubMed  Google Scholar 

  80. Chen N, Aleska K, Woodland C, Rieder MJ, Koren G (2008) N-acetylcysteine prevents ifosfamide-induced nephrotoxicity in rats. Br J Pharmacol 153:1364–1372

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Hanly L, Chen N, Rieder M, Koren G (2009) Ifosfamide nephrotoxicity in children: a mechanistic base for pharmacological prevention. Expert Opin Drug Saf 8:155–168

    CAS  PubMed  Google Scholar 

  82. Hanly LN, Chen N, Aleksa K et al (2011) N-acetylcysteine as a Novel Prophylactic Treatment for Ifosfamide-Induced Nephro-toxicity in Children: Translational Pharmaco-kinetics. J Clin Pharmacol 52(1):55–64

    PubMed  Google Scholar 

  83. Chang TKH, Weber GF, Crespi CL, Waxman DJ (1993) Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in microsomes. Cancer Res 53:5629–5637

    CAS  PubMed  Google Scholar 

  84. Huang Z, Roy P, Waxman DJ (2000) Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 59:961–972

    CAS  PubMed  Google Scholar 

  85. Downing HJ, Pirmohamed M, Beresford MW, Smyth RL (2012) Paediatric use of mycophenolate mofetil. Br J Clin Pharmacol 75:45–59

    PubMed Central  Google Scholar 

  86. Lima JJ, Lang JE, Mougey EB et al (2013) Association of CYP2C19 polymorphisms and lansoprazole respiratory adverse effects in children. J Pediatr 163(3):686–691

    CAS  PubMed  Google Scholar 

  87. Fukuda T, Chidambaran V, Mizuno T et al (2013) OCT1 genetic variants influence the pharmacokinetics of morphine in children. Pharmacogenomics 14:1141–1151

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Vear S, Stein M, Ho R (2013) Warfarin pharmacogenomics in children. Pediatr Blood Cancer 60:1402–1407

    PubMed  Google Scholar 

  89. Amstutz U, Ross CJ, Castro-Pastrana LI et al (2013) CPNDS Consortium. HLA-A 31:01 and HLA-B 15:02 are genetic markers for carbamazepine hypersensitivity in children. Clin Pharmacol Ther 94:142–149

    CAS  PubMed  Google Scholar 

  90. Siegel M (2012) Psychopharmacology of autism disorder: evidence and practice. Child Adolesc Psychiatr Clin N Am 21:957–973

    PubMed  Google Scholar 

  91. Arango C (2011) Child and adolescent neuropsychopharmacology: now or never. Eur Neuropsychopharmacol 21:563–564

    CAS  PubMed  Google Scholar 

  92. Stroeh O, Trivedi HK (2012) Appropriate and judicious use of psychotropic medications in youth. Child Adolesc Psychiatr Clin N Am 21:703–711

    PubMed  Google Scholar 

  93. Pidano AE, Honigfeld L (2012) Pediatric psychopharmacology: context, model programs and considerations for care. Psychiatr Serv 63:929–934

    PubMed  Google Scholar 

  94. Noam Y, Raol YH, Holmes GL (2013) Searching for new targets for treatment of pediatric epilepsy. Epilepsy Behav 26:253–260

    PubMed Central  PubMed  Google Scholar 

  95. Faught E (2012) Antiepileptic drug trials: the view from the clinic. Epileptic Disord 14:114–123

    PubMed  Google Scholar 

  96. Kelly LE, Chaudhry SA, Rieder MJ et al (2013) A clinical tool for reducing central nervous system depression among neonates exposed to codeine through breast milk. PLoS One 8:e70073

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Shaw K, Amstutz U, Castro-Pastrana L et al (2013) Pharmacogenomic investigation of adverse drug reactions (ADRs): the ADR prioritization tool, APT. J Popul Ther Clin Pharmacol 20:e110–e127

    PubMed  Google Scholar 

  98. Loo TT, Ross CJ, Sistonen J et al (2010) Pharmacogenomics and active surveillance for serious adverse drug reactions in children. Pharmacogenomics 11:1269–1285

    CAS  PubMed  Google Scholar 

  99. Wong WB, Carlson JJ, Thariani R, Veenstra DL (2010) Cost effectiveness of pharmacogenomics: a critical and systematic review. Pharmacoeconomics 28:1001–1013

    PubMed  Google Scholar 

  100. Hedgecoe AM (2006) Context, ethics and pharmacogenetics. Stud Hist Philos Biol Biomed Sci 37:566–582

    PubMed  Google Scholar 

  101. De Marco M, Cykert S, Coad N, Doost K, Schaal J, White B et al (2010) Views on personalized medicine: do the attitudes of African American and white prescription drug consumers differ? Public Health Genomics 13:276–283

    PubMed Central  PubMed  Google Scholar 

  102. Rogausch A, Prause D, Schallenberg A, Brockmoller J, Himmel W (2006) Patients’ and physicians’ perspectives on pharmacogenetic testing. Pharmacogenomics 7:49–59

    PubMed  Google Scholar 

  103. Fargher EA, Eddy C, Newman W, Qasim F, Tricker K, Elliott RA et al (2007) Patients’ and healthcare professionals’ views on pharmacogenetic testing and its future delivery in the NHS. Pharmacogenomics 8:1511–1519

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rieder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rieder, M. (2014). Pharmacogenomics in Children. In: Yan, Q. (eds) Pharmacogenomics in Drug Discovery and Development. Methods in Molecular Biology, vol 1175. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0956-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0956-8_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0955-1

  • Online ISBN: 978-1-4939-0956-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics