Skip to main content

Secretion of Circular Proteins Using Sortase

  • Protocol
  • First Online:
Book cover Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1174))

Abstract

Circular proteins occur naturally and have been found in microorganisms, plants, and eukaryotes where they are commonly involved in host defense. Properties of circular proteins include enhanced resistance to exoproteases, increased thermostability, longer life spans, and increased activity. Using an enzymatic approach based on the bacterial sortase A (SrtA) transpeptidase, N- and C-termini of conventional linear proteins can be linked resulting in a circular protein. Circularization of bioengineered linear substrate proteins can indeed confer the desirable properties associated with circular proteins. Here, we describe how cells can be manipulated to secrete circularized proteins for substrates of choice via sortase-mediated circularization in the lumen of the endoplasmic reticulum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trabi M, Craik DJ (2002) Circular proteins – no end in sight. Trends Biochem Sci 27:132–138

    Article  CAS  PubMed  Google Scholar 

  2. Craik DJ, Allewell NM (2012) Thematic minireview series on circular proteins. J Biol Chem 287:26999–27000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Martinez-Bueno M, Maqueda M, Galvez A et al (1994) Determination of the gene sequence and the molecular structure of the enterococcal peptide antibiotic AS-48. J Bacteriol 176:6334–6339

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Salomon RA, Farias RN (1992) Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 174:7428–7435

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Jennings C, West J, Waine C, Craik D, Anderson M (2001) Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proc Natl Acad Sci U S A 98:10614–10619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Tam JP, Lu YA, Yang JL, Chiu KW (1999) An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc Natl Acad Sci U S A 96:8913–8918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Goransson U, Burman R, Gunasekera S, Stromstedt AA, Rosengren KJ (2012) Circular proteins from plants and fungi. J Biol Chem 287:27001–27006

    Article  PubMed Central  PubMed  Google Scholar 

  8. Tang YQ, Yuan J, Osapay G et al (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 286:498–502

    Article  CAS  PubMed  Google Scholar 

  9. Trabi M, Schirra HJ, Craik DJ (2001) Three-dimensional structure of RTD-1, a cyclic antimicrobial defensin from Rhesus macaque leukocytes. Biochemistry 40:4211–4221

    Article  CAS  PubMed  Google Scholar 

  10. Lehrer RI, Cole AM, Selsted ME (2012) theta-Defensins: cyclic peptides with endless potential. J Biol Chem 287:27014–27019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Aboye TL, Camarero JA (2012) Biological synthesis of circular polypeptides. J Biol Chem 287:27026–27032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Antos JM, Popp MW, Ernst R et al (2009) A straight path to circular proteins. J Biol Chem 284:16028–16036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Popp MW, Ploegh HL (2011) Making and breaking peptide bonds: protein engineering using sortase. Angew Chem Int Ed Engl 50: 5024–5032

    Article  CAS  PubMed  Google Scholar 

  14. Popp MW, Dougan SK, Chuang TY, Spooner E, Ploegh HL (2011) Sortase-catalyzed transformations that improve the properties of cytokines. Proc Natl Acad Sci U S A 108: 3169–3174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bolscher JG, Oudhoff MJ, Nazmi K et al (2011) Sortase A as a tool for high-yield histatin cyclization. FASEB J 25: 2650–2658

    Article  CAS  PubMed  Google Scholar 

  16. Strijbis K, Spooner E, Ploegh HL (2012) Protein ligation in living cells using sortase. Traffic 13:780–789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidde L. Ploegh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Strijbis, K., Ploegh, H.L. (2014). Secretion of Circular Proteins Using Sortase. In: Ivanov, A. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 1174. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0944-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0944-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0943-8

  • Online ISBN: 978-1-4939-0944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics