Skip to main content

Nanocones to Study Initial Steps of Endocytosis

  • Protocol
  • First Online:
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1174))

Abstract

Vesicle endocytosis at the plasma membrane is associated with a precise temporal choreography in the recruitment of cytosolic proteins that sense, generate, or stabilize locally curved membrane regions. To dissect the role of membrane curvature sensing from other co-occurring events during the initial steps of endocytosis, we developed a method to artificially induce nanoscale deformations of the PM in living cells that is based on cone-shaped nanostructures (i.e., Nanocones). When cultured on Nanocones, cells create stable inward plasma membrane deformations to which curvature-sensing proteins are recruited. Here, we provide a detailed protocol how to use Nanocones to study recruitment during the initial steps of endocytosis in cells by fluorescence and electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peskin CS, Odell GM, Oster GF (1993) Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys J 65:316–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hinshaw JE, Schmid SL (1995) Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374:190–192

    Article  CAS  PubMed  Google Scholar 

  3. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596

    Article  CAS  PubMed  Google Scholar 

  4. Gallop JL, Jao CC, Kent HM et al (2006) Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J 25:2898–2910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Galic M, Jeong S, Tsai FC et al (2012) External push and internal pull forces recruit curvature-sensing N-BAR domain proteins to the plasma membrane. Nat Cell Biol 14:874–881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kooijman EE, Chupin V, Fuller NL et al (2005) Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. Biochemistry 44:2097–2102

    Article  CAS  PubMed  Google Scholar 

  7. Bhatia VK, Madsen KL, Bolinger PY et al (2009) Amphipathic motifs in BAR domains are essential for membrane curvature sensing. EMBO J 28:3303–3314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Takano K, Toyooka K, Suetsugu S (2008) EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J 27:2817–2828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Peter BJ, Kent HM, Mills IG et al (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303:495–499

    Article  CAS  PubMed  Google Scholar 

  10. Taylor MJ, Perrais D, Merrifield CJ (2011) A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol 9:e1000604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kaksonen M, Toret CP, Drubin DG (2005) A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123:305–320

    Article  CAS  PubMed  Google Scholar 

  12. Jeong S, McDowell MT, Cui Y (2011) Low-temperature self-catalytic growth of tin oxide nanocones over large areas. ACS Nano 5:5800–5807

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S. J. acknowledges support from the Korea Foundation for Advanced Studies (KFAS) for graduate fellowship. M. G. was supported by fellowships from the Swiss National Science Foundation (No. PBBSP3-123159), Novartis Jubilaeumsstiftung, Stanford Deans Postdoctoral Fellowship and grants from the German Research Foundation (Cluster of Excellence EXC 1003, Cells in Motion, CiM, Münster, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milos Galic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jeong, S., Galic, M. (2014). Nanocones to Study Initial Steps of Endocytosis. In: Ivanov, A. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 1174. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0944-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0944-5_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0943-8

  • Online ISBN: 978-1-4939-0944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics