Skip to main content

Targeted Small Noncoding RNA-Directed Gene Activation in Human Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1173))

Abstract

A growing body of evidence suggests that noncoding RNA (ncRNA) transcripts play a fundamental role in regulating gene expression via targeting epigenetic modifications to particular loci in the genome. Classical examples of such regulation are X-chromosome inactivation and genomic imprinting; however it is now clear that ncRNAs exert their influence over a wider array of genes throughout the metazoan genome. Accumulating evidence suggests that the ncRNAs act as guides for epigenetic silencing complexes to specific sites within the genome. Those ncRNAs involved in regulating the expression of particular protein-coding genes offer panoply of targets that when suppressed can result in derepression or activation of the ncRNA-targeted locus. Recent work has determined the underlying mechanisms involved in ncRNA-targeted epigenetic regulation in a subset of genes. These findings have resulted in a paradigm shift whereby targeted gene activation can be achieved, by targeting endogenous regulatory ncRNAs, producing potential novel treatments for genetic and infectious diseases where increases in gene expression are required.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lee J (2012) Epigenetic regulation by long noncoding RNAs. Science 338:1435–1439

    Article  CAS  PubMed  Google Scholar 

  2. Ponting C (2008) The functional repertoires of metazoan genomes. Nat Rev Genet 9:689–698

    Article  CAS  PubMed  Google Scholar 

  3. Morris K (2009) RNA-directed transcriptional gene silencing and activation in human cells. Oligonucleotides 19:299–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kung J, Colognori D, Lee J (2013) Long noncoding RNAs: past, present, and future. Genetics 193:651–669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Morris K (2009) Non-coding RNAs, epigenetic memory and the passage of information to progeny. RNA Biol 6(3):242–247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441:469–474

    Article  CAS  PubMed  Google Scholar 

  7. Davidson B, Fasman GD (1969) The single-stranded polyadenylic acid-poly-L-lysine complex. A conformational study and characterization. Biochemistry 8:4116–4126

    Article  CAS  PubMed  Google Scholar 

  8. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  PubMed  Google Scholar 

  9. Banfai B, Jia H, Khatun J, Wood E, Risk B, Gundling WE Jr, Kundaje A, Gunawardena HP, Yu Y, Xie L, Krajewski K, Strahl BD, Chen X, Bickel P, Giddings MC, Brown JB, Lipovich L (2012) Long noncoding RNAs are rarely translated in two human cell lines. Genome Res 22:1646–1657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Carninci P, Kasukawa T, Katayama S, Gough J, Frith M, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic V, Brenner S, Batalov S, Forrest AR, Zavolan M, Davis M, Wilming L, Aidinis V, Allen J, Ambesi-Impiombato A, Apweiler R, Aturaliya R, Bailey T, Bansal M, Baxter L, Beisel K, Bersano T, Bono H, Chalk A, Chiu K, Choudhary V, Christoffels A, Clutterbuck D, Crowe M, Dalla E, Dalrymple B, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher C, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras T, Gojobori T, Green R, Gustincich S, Harbers M, Hayashi Y, Hensch T, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan S, Kruger A, Kummerfeld S, Kurochkin I, Lareau L, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  CAS  PubMed  Google Scholar 

  11. Amaral P, Mattick J (2008) Noncoding RNA in development. Mamm Genome 19:454–492

    Article  CAS  PubMed  Google Scholar 

  12. Lucchesi J, Kelly W, Panning B (2005) Chromatin remodeling in dosage compensation. Annu Rev Genet 39:615–651

    Article  CAS  PubMed  Google Scholar 

  13. Lee J (2010) The X as model for RNA’s niche in epigenomic regulation. Cold Spring Harb Perspect Biol 2:a003749

    PubMed Central  PubMed  Google Scholar 

  14. Wutz A (2003) RNAs templating chromatin structure for dosage compensation in animals. Bioessays 25:434–442

    Article  CAS  PubMed  Google Scholar 

  15. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    Article  CAS  PubMed  Google Scholar 

  16. Brown C, Lafreniere R, Powers V, Sebastio G, Ballabio A, Pettigrew A, Ledbetter D, Levy E, Craig I, Willard H (1991) Localization of the X inactivation centre on the human X chromosome in Xq13. Nature 349:82–84

    Article  CAS  PubMed  Google Scholar 

  17. Rastan S, Robertson EJ (1985) X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. J Embryol Exp Morphol 90:379–388

    CAS  PubMed  Google Scholar 

  18. Cattanach B, Isaacson J (1967) Controlling elements in the mouse X chromosome. Genetics 57:331–346

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Kay GF, Barton SC, Surani MA, Rastan S (1994) Imprinting and X chromosome counting mechanisms determine Xist expression in early mouse development. Cell 77:639–650

    Article  CAS  PubMed  Google Scholar 

  20. Lyon MF (1999) Imprinting and X-chromosome inactivation. Results Probl Cell Differ 25:73–90

    Article  CAS  PubMed  Google Scholar 

  21. Avner P, Heard E (2001) X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet 2:59–67

    Article  CAS  PubMed  Google Scholar 

  22. Boumil RM, Lee JT (2001) Forty years of decoding the silence in X-chromosome inactivation. Hum Mol Genet 10:2225–2232

    Article  CAS  PubMed  Google Scholar 

  23. Namekawa SH, Payer B, Huynh KD, Jaenisch R, Lee JT (2010) Two-step imprinted X inactivation: repeat versus genic silencing in the mouse. Mol Cell Biol 30:3187–3205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Xu N, Donohoe ME, Silva SS, Lee JT (2007) Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nat Genet 39:1390–1396

    Article  CAS  PubMed  Google Scholar 

  25. Xu N, Tsai CL, Lee JT (2006) Transient homologous chromosome pairing marks the onset of X inactivation. Science 311:1149–1152

    Article  CAS  PubMed  Google Scholar 

  26. Bacher C, Guggiari M, Brors B, Augui S, Clerc P, Avner P, Eils R, Heard E (2006) Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat Cell Biol 8:293–299

    Article  CAS  PubMed  Google Scholar 

  27. Edwards C, Ferguson-Smith A (2007) Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol 19:281–289

    Article  CAS  PubMed  Google Scholar 

  28. Sleutels F, Barlow DP (2002) The origins of genomic imprinting in mammals. Adv Genet 46:119–163

    Article  CAS  PubMed  Google Scholar 

  29. Bartolomei MS, Ferguson-Smith AC (2011) Mammalian genomic imprinting. Cold Spring Harb Perspect Biol. 3(7). pii: a002592. doi: 10.1101/cshperspect.a002592

    Google Scholar 

  30. Lee JT (2003) Molecular links between X-inactivation and autosomal imprinting: X-inactivation as a driving force for the evolution of imprinting? Curr Biol 13(6):R242–54

    Article  Google Scholar 

  31. Cai X, Cullen B (2007) The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13:313–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kevin V, M. (2009) RNA-directed control of transcription in human cells: specifically turning genes ON or OFF. Gene Ther Reg 04

    Google Scholar 

  33. Weinberg M, Morris K (2013) Long non-coding RNA targeting and transcriptional de-repression. Nucleic Acid Ther 23:9–14

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Leung AK, Sharp PA (2006) Function and localization of microRNAs in mammalian cells. Cold Spring Harb Symp Quant Biol 71:29–38

    Article  CAS  PubMed  Google Scholar 

  35. Turner AM, Morris KV (2010) Controlling transcription with noncoding RNAs in mammalian cells. Biotechniques 48:ix–xvi

    Article  CAS  PubMed  Google Scholar 

  36. Ackley A, Lenox A, Stapleton K, Knowling S, Lu T, Sabir KS, Vogt PK, Morris KV (2013) An algorithm for generating small RNAs capable of epigenetically modulating transcriptional gene silencing and activation in human cells. Mol Ther Nucleic Acids 2:e104

    Article  PubMed Central  PubMed  Google Scholar 

  37. Hawkins P, Santoso S, Adams C, Anest V, Morris K (2009) Promoter targeted small RNAs induce long-term transcriptional gene silencing in human cells. Nucleic Acids Res 37:2984–2995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kim DH, Villeneuve LM, Morris KV, Rossi JJ (2006) Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol 13:793–797

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki K, Juelich T, Lim H, Ishida T, Watanebe T, Cooper DA, Rao S, Kelleher AD (2008) Closed chromatin architecture is induced by an RNA duplex targeting the HIV-1 promoter region. J Biol Chem 283:23353–23363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Weinberg MS, Villeneuve LM, Ehsani A, Amarzguioui M, Aagaard L, Chen ZX, Riggs AD, Rossi JJ, Morris KV (2006) The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA 12:256–262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Han J, Kim D, Morris K (2007) Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc Natl Acad Sci U S A 104:12422–12427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Knowling S, Morris KV (2011) Epigenetic regulation of gene expression in human cells by noncoding RNAs. Prog Mol Biol Transl Sci 102:1–10

    Article  CAS  PubMed  Google Scholar 

  43. Hawkins P, Morris K (2008) RNA and transcriptional modulation of gene expression. Cell Cycle 7:602–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grander D, Morris KV (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20(4):440–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Braunschweig M, Jagannathan V, Gutzwiller A, Bee G (2012) Investigations on transgenerational epigenetic response down the male line in F2 pigs. PLoS One 7:e30583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Janowski B, Younger S, Hardy D, Ram R, Huffman K, Corey D (2007) Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol 3:166–173

    Article  CAS  PubMed  Google Scholar 

  47. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R (2006) Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A 103:17337–17342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Morris KV, Santoso S, Turner AM, Pastori C, Hawkins PG (2008) Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet 4:e1000258

    Article  PubMed Central  PubMed  Google Scholar 

  49. Schwartz JC, Younger ST, Nguyen NB, Hardy DB, Monia BP, Corey DR, Janowski BA (2008) Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol 15:842–848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, Cui H (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451:202–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Hawkins PG, Morris KV (2010) Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 1:165–175

    Article  PubMed Central  PubMed  Google Scholar 

  52. Modarresi F, Faghihi M, Lopez-Toledano M, Fatemi R, Magistri M, Brothers S, van der Brug M, Wahlestedt C (2012) Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol 30:453–459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The project was supported by NIHLB R01AI084406, NIAID R56 AI096861-01, and PO1 AI099783-01 to KVM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin V. Morris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Damski, C., Morris, K.V. (2014). Targeted Small Noncoding RNA-Directed Gene Activation in Human Cells. In: Werner, A. (eds) Animal Endo-SiRNAs. Methods in Molecular Biology, vol 1173. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0931-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0931-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0930-8

  • Online ISBN: 978-1-4939-0931-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics