Skip to main content

The Senescence Arrest Program and the Cell Cycle

  • Protocol
  • First Online:
Book cover Cell Cycle Control

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1170))

Abstract

All living organisms are subject to progressive loss of function and damage to their tissues, a process known as aging. At the cellular level, the accumulation of damage to DNA, proteins, and organelles induces cellular senescence, a stress-response pathway that likely influences the aging process. Although the senescence arrest program was initially described in vitro, accumulating evidence suggests that this damage response program occurs in a variety of pathologic settings. This review discusses aspects of the senescence program, their interrelationships with damage arrest pathways, the cell cycle, and the impact of senescence in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705

    Article  CAS  PubMed  Google Scholar 

  2. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Stein G, Drullinger L, Soulard A, Dulić V (1999) Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol 19(3):2109–2117

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Herbig U, Jobling W, Chen B, Chen D, Sedivy J (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14(4):501–513

    Article  CAS  PubMed  Google Scholar 

  5. Iwasa H, Han J, Ishikawa F (2003) Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes Cells 8(2):131–144

    Article  CAS  PubMed  Google Scholar 

  6. Li H, Wang W, Liu X, Paulson K, Yee A, Zhang X (2010) Transcriptional factor HBP1 targets P16(INK4A), upregulating its expression and consequently is involved in Ras-induced premature senescence. Oncogene 29(36):5083–5094

    Article  CAS  PubMed  Google Scholar 

  7. Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A 93(24):13742–13747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Naka K, Tachibana A, Ikeda K, Motoyama N (2004) Stress-induced premature senescence in hTERT-expressing ataxia telangiectasia fibroblasts. J Biol Chem 279(3):2030–2037

    Article  CAS  PubMed  Google Scholar 

  9. Freund A, Patil C, Campisi J (2011) p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 30(8):1536–1548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hayflick L, Moorhead P (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  11. Hayflick L (1965) The limited in vitro lifetime of human diploid strains. Exp Cell Res 37:614–636

    Article  CAS  PubMed  Google Scholar 

  12. Dimri G, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano E, Linskens M, Rubelj I, Pereira-Smith O (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92(20):9363–9367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. d’Adda di Fagagna F, Reaper P, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter N, Jackson S (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426(6963):194–198

    Article  PubMed  Google Scholar 

  14. Rodier F, Munoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Coppe JP, Campeau E, Beausejour CM, Kim SH, Davalos AR, Campisi J (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 124(Pt 1):68–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Adams PD (2007) Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 397(1–2):84–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Wang W, Chen JX, Liao R, Deng Q, Zhou JJ, Huang S, Sun P (2002) Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol Cell Biol 22(10):3389–3403

    Article  PubMed Central  PubMed  Google Scholar 

  17. Freund A, Laberge R-M, Demaria M, Campisi J (2012) Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 23(11):2066–2075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Coppe JP, Boysen M, Sun CH, Wong BJ, Kang MK, Park NH, Desprez PY, Campisi J, Krtolica A (2008) A role for fibroblasts in mediating the effects of tobacco-induced epithelial cell growth and invasion. Mol Cancer Res 6(7):1085–1098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12):2853–2868

    Article  CAS  PubMed  Google Scholar 

  20. Narita M, Nũnez S, Heard E, Narita M, Lin A, Hearn S, Spector D, Hannon G, Lowe S (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716

    Article  CAS  PubMed  Google Scholar 

  21. Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11(8):973–979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Coppe JP, Rodier F, Patil CK, Freund A, Desprez PY, Campisi J (2011) Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem 286(42):36396–36403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Fries J (1980) Aging, natural death, and the compression of morbidity. N Engl J Med 303(3):130–135

    Article  CAS  PubMed  Google Scholar 

  24. Harley C, Futcher A, Greider C (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345(6274):458–460

    Article  CAS  PubMed  Google Scholar 

  25. Bodnar A, Ouellette M, Frolkis M, Holt S, Chiu C, Morin G, Harley C, Shay J, Lichtsteiner S, Wright W (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349):349–352

    Article  CAS  PubMed  Google Scholar 

  26. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5(8):741–747

    Article  CAS  PubMed  Google Scholar 

  27. Lindsey J, McGill N, Lindsey L, Green D, Cooke H (1991) In vivo loss of telomeric repeats with age in humans. Mutat Res 256(1):45–48

    Article  CAS  PubMed  Google Scholar 

  28. Huang S, Risques R, Martin G, Rabinovitch P, Oshima J (2008) Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A. Exp Cell Res 314(1):82–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kudlow B, Stanfel M, Burtner C, Johnston E, Kennedy B (2008) Suppression of proliferative defects associated with processing-defective lamin A mutants by hTERT or inactivation of p53. Mol Biol Cell 19(12):5238–5248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Cristofalo V, Allen R, Pignolo R, Martin B, Beck J (1998) Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci U S A 95(18):10614–10619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Smith J, Whitney R (1980) Intraclonal variation in proliferative potential of human diploid fibroblasts: stochastic mechanism for cellular aging. Science 207(4426):82–84

    Article  CAS  PubMed  Google Scholar 

  32. Lee S, Jeong S-Y, Lim W-C, Kim S, Park Y-Y, Sun X, Youle R, Cho H (2007) Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem 282(31):22977–22983

    Article  CAS  PubMed  Google Scholar 

  33. Yoon Y-S, Yoon D-S, Lim I, Yoon S-H, Chung H-Y, Rojo M, Malka F, Jou M-J, Martinou J-C, Yoon G (2006) Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J Cell Physiol 209(2):468–480

    Article  CAS  PubMed  Google Scholar 

  34. Bitto A, Sell C, Crowe E, Lorenzini A, Malaguti M, Hrelia S, Torres C (2010) Stress-induced senescence in human and rodent astrocytes. Exp Cell Res 316(17):2961–2968

    Article  CAS  PubMed  Google Scholar 

  35. Gorbunova V, Seluanov A, Pereira-Smith O (2002) Expression of human telomerase (hTERT) does not prevent stress-induced senescence in normal human fibroblasts but protects the cells from stress-induced apoptosis and necrosis. J Biol Chem 277(41):38540–38549

    Article  CAS  PubMed  Google Scholar 

  36. Toussaint O, Medrano E, von Zglinicki T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35(8):927–945

    Article  CAS  PubMed  Google Scholar 

  37. von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27(7):339–344

    Article  Google Scholar 

  38. Naylor R, Baker D, van Deursen J (2013) Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin Pharmacol Ther 93(1):105–116

    Article  CAS  PubMed  Google Scholar 

  39. Jeyapalan J, Sedivy J (2008) Cellular senescence and organismal aging. Mech Ageing Dev 129(7–8):467–541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Herbig U, Ferreira M, Condel L, Carey D, Sedivy J (2006) Cellular senescence in aging primates. Science 311(5765):1257

    Article  CAS  PubMed  Google Scholar 

  41. Jeyapalan J, Ferreira M, Sedivy J, Herbig U (2007) Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128(1):36–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kreiling J, Tamamori-Adachi M, Sexton A, Jeyapalan J, Munoz-Najar U, Peterson A, Manivannan J, Rogers E, Pchelintsev N, Adams P, Sedivy J (2011) Age-associated increase in heterochromatic marks in murine and primate tissues. Aging Cell 10(2):292–304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Krishnamurthy J, Torrice C, Ramsey M, Kovalev G, Al-Regaiey K, Su L, Sharpless N (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114(9):1299–1307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Ressler S, Bartkova J, Niederegger H, Bartek J, Scharffetter-Kochanek K, Jansen-Dürr P, Wlaschek M (2006) p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5(5):379–389

    Article  CAS  PubMed  Google Scholar 

  45. Bhat R, Crowe E, Bitto A, Moh M, Katsetos C, Garcia F, Johnson F, Trojanowski J, Sell C, Torres C (2012) Astrocyte senescence as a component of Alzheimer’s disease. PLoS One 7(9):e45069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Holdt L, Sass K, Gäbel G, Bergert H, Thiery J, Teupser D (2011) Expression of Chr9p21 genes CDKN2B (p15(INK4b)), CDKN2A (p16(INK4a), p14(ARF)) and MTAP in human atherosclerotic plaque. Atherosclerosis 214(2):264–270

    Article  CAS  PubMed  Google Scholar 

  47. Westhoff J, Hilgers K, Steinbach M, Hartner A, Klanke B, Amann K, Melk A (2008) Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16INK4a. Hypertension 52(1):123–129

    Article  CAS  PubMed  Google Scholar 

  48. Le ON, Rodier F, Fontaine F, Coppe JP, Campisi J, DeGregori J, Laverdiere C, Kokta V, Haddad E, Beausejour CM (2010) Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status. Aging Cell 9(3):398–409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Tsuji T, Aoshiba K, Nagai A (2004) Cigarette smoke induces senescence in alveolar epithelial cells. Am J Respir Cell Mol Biol 31(6):643–649

    Article  CAS  PubMed  Google Scholar 

  50. Krtolica A, Parrinello S, Lockett S, Desprez P, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98(21):12072–12077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Baker D, Wijshake T, Tchkonia T, Lebrasseur N, Childs B, van de Sluis B, Kirkland J, van Deursen J (2011) Clearance of p16(Ink4a)-positive senescent cells delays ageing-associated disorders. Nature 479:232–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Wang J, Bennett M (2012) Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 111(2):245–259

    Article  CAS  PubMed  Google Scholar 

  53. Shane Anderson A, Loeser R (2010) Why is osteoarthritis an age-related disease? Best Pract Res Clin Rheumatol 24(1):15–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Tchkonia T, Morbeck D, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, Khosla S, Jensen M, Kirkland J (2010) Fat tissue, aging, and cellular senescence. Aging Cell 9(5):667–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Coppe JP, Kauser K, Campisi J, Beausejour CM (2006) Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J Biol Chem 281(40):29568–29574

    Article  CAS  PubMed  Google Scholar 

  56. Bavik C, Coleman I, Dean J, Knudsen B, Plymate S, Nelson P (2006) The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res 66(2):794–802

    Article  CAS  PubMed  Google Scholar 

  57. Parrinello S, Coppe JP, Krtolica A, Campisi J (2005) Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118(Pt 3):485–496

    Article  CAS  PubMed  Google Scholar 

  58. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, Pascual G, Morris KJ, Khan S, Jin H, Dharmalingam G, Snijders AP, Carroll T, Capper D, Pritchard C, Inman GJ, Longerich T, Sansom OJ, Benitah SA, Zender L, Gil J (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15(8):978–990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Liu H, Fergusson M, Castilho R, Liu J, Cao L, Chen J, Malide D, Rovira I, Schimel D, Kuo C, Gutkind J, Hwang P, Finkel T (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317(5839):803–806

    Article  CAS  PubMed  Google Scholar 

  60. D-y Z, H-j W, Y-z T (2011) Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway. PLoS One 6(6):e21397

    Article  Google Scholar 

  61. Diala I, Wagner N, Magdinier F, Shkreli M, Sirakov M, Bauwens S, Schluth-Bolard C, Simonet T, Renault V, Ye J, Djerbi A, Pineau P, Choi J, Artandi S, Dejean A, Plateroti M, Gilson E (2013) Telomere protection and TRF2 expression are enhanced by the canonical Wnt signalling pathway. EMBO Rep 14(4):356–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. McKay B, Ogborn D, Baker J, Toth K, Tarnopolsky M, Parise G (2013) Elevated SOCS3 and altered IL-6 signaling is associated with age-related human muscle stem cell dysfunction. Am J Physiol Cell Physiol 304(8):C717–C728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Wei H, Shen G, Deng X, Lou D, Sun B, Wu H, Long L, Ding T, Zhao J (2013) The role of IL-6 in bone marrow (BM)-derived mesenchymal stem cells (MSCs) proliferation and chondrogenesis. Cell Tissue Bank 14(4):699–706

    Article  CAS  PubMed  Google Scholar 

  64. Elzi D, Song M, Hakala K, Weintraub S, Shiio Y (2012) Wnt antagonist SFRP1 functions as a secreted mediator of senescence. Mol Cell Biol 32(21):4388–4399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Prieur A, Peeper D (2008) Cellular senescence in vivo: a barrier to tumorigenesis. Curr Opin Cell Biol 20(2):150–155

    Article  CAS  PubMed  Google Scholar 

  66. Kang T-W, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, Hohmeyer A, Gereke M, Rudalska R, Potapova A, Iken M, Vucur M, Weiss S, Heikenwalder M, Khan S, Gil J, Bruder D, Manns M, Schirmacher P, Tacke F, Ott M, Luedde T, Longerich T, Kubicka S, Zender L (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479(7374):547–551

    Article  CAS  PubMed  Google Scholar 

  67. Jun J-I, Lau L (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12(7):676–685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Park J, Barbul A (2004) Understanding the role of immune regulation in wound healing. Am J Surg 187(5A):11S–16S

    Article  CAS  PubMed  Google Scholar 

  69. Krizhanovsky V, Yon M, Dickins R, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe S (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134(4):657–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Shaw A, Joshi S, Greenwood H, Panda A, Lord J (2010) Aging of the innate immune system. Curr Opin Immunol 22(4):507–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Chou J, Effros R (2012) T cell replicative senescence in human aging. Curr Pharm Des 19(9):1680–1698

    Google Scholar 

  72. Dulic V, Drullinger LF, Lees E, Reed SI, Stein GH (1993) Altered regulation of G1 cyclins in senescent human diploid fibroblasts: accumulation of inactive cyclin E-Cdk2 and cyclin D1-Cdk2 complexes. Proc Natl Acad Sci U S A 90(23):11034–11038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Grove GL, Cristofalo VJ (1977) Characteri-zation of the cell cycle of cultured human diploid cells: effects of aging and hydrocortisone. J Cell Physiol 90(3):415–422

    Google Scholar 

  74. Gorman SD, Cristofalo VJ (1985) Reinitiation of cellular DNA synthesis in BrdU-selected nondividing senescent WI-38 cells by simian virus 40 infection. J Cell Physiol 125(1):122–126

    Article  CAS  PubMed  Google Scholar 

  75. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, d’Adda di Fagagna F (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444(7119):638–642

    Article  PubMed  Google Scholar 

  76. Medcalf AS, Klein-Szanto AJ, Cristofalo VJ (1996) Expression of p21 is not required for senescence of human fibroblasts. Cancer Res 56(20):4582–4585

    CAS  PubMed  Google Scholar 

  77. Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277(5327):831–834

    Article  CAS  PubMed  Google Scholar 

  78. Fink LS, Roell M, Caiazza E, Lerner C, Stamato T, Hrelia S, Lorenzini A, Sell C (2011) 53BP1 contributes to a robust genomic stability in human fibroblasts. Aging 3(9):836–845

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Lorenzini A, Stamato T, Sell C (2011) The disposable soma theory revisited: time as a resource in the theories of aging. Cell Cycle 10(22):3853–3856

    Article  CAS  PubMed  Google Scholar 

  80. Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D, Hwang ES (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5(2):187–195

    Article  CAS  PubMed  Google Scholar 

  81. Wei W, Sedivy JM (1999) Differentiation between senescence (M1) and crisis (M2) in human fibroblast cultures. Exp Cell Res 253(2):519–522

    Article  CAS  PubMed  Google Scholar 

  82. Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, Pehrson JR, Berger JM, Kaufman PD, Adams PD (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8(1):19–30

    Article  CAS  PubMed  Google Scholar 

  83. Zhang R, Chen W, Adams PD (2007) Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol 27(6):2343–2358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grant AG039799 (C.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Sell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bitto, A., Crowe, E.P., Lerner, C., Torres, C., Sell, C. (2014). The Senescence Arrest Program and the Cell Cycle. In: Noguchi, E., Gadaleta, M. (eds) Cell Cycle Control. Methods in Molecular Biology, vol 1170. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0888-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0888-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0887-5

  • Online ISBN: 978-1-4939-0888-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics