Skip to main content

Interplay Between the Cell Cycle and Double-Strand Break Response in Mammalian Cells

  • Protocol
  • First Online:
Book cover Cell Cycle Control

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1170))

Abstract

The cell cycle is intimately associated with the ability of cells to sense and respond to and repair DNA damage. Understanding how cell cycle progression, particularly DNA replication and cell division, are regulated and how DNA damage can affect these processes has been the subject of intense research. Recent evidence suggests that the repair of DNA damage is regulated by the cell cycle, and that cell cycle factors are closely associated with repair factors and participate in cellular decisions regarding how to respond to and repair damage. Precise regulation of cell cycle progression in the presence of DNA damage is essential to maintain genomic stability and avoid the accumulation of chromosomal aberrations that can promote tumor formation. In this review, we discuss the current understanding of how mammalian cells induce cell cycle checkpoints in response to DNA double-strand breaks. In addition, we discuss how cell cycle factors modulate DNA repair pathways to facilitate proper repair of DNA lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nam EA, Cortez D (2011) ATR signalling: more than meeting at the fork. Biochem J 436(3):527–536

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Neal JA, Meek K (2011) Choosing the right path: does DNA-PK help make the decision? Mutat Res 711(1–2):73–86

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14(4):197–210

    CAS  Google Scholar 

  4. Chan EH, Santamaria A, Sillje HH, Nigg EA (2008) Plk1 regulates mitotic Aurora A function through betaTrCP-dependent degradation of hBora. Chromosoma 117(5):457–469

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Langerak P, Russell P (2011) Regulatory networks integrating cell cycle control with DNA damage checkpoints and double-strand break repair. Philos Trans R Soc Lond B Biol Sci 366(1584):3562–3571

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Donjerkovic D, Scott DW (2000) Regulation of the G1 phase of the mammalian cell cycle. Cell Res 10(1):1–16

    CAS  PubMed  Google Scholar 

  7. Satyanarayana A, Kaldis P (2009) Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28(33):2925–2939

    CAS  PubMed  Google Scholar 

  8. Ray D, Kiyokawa H (2008) CDC25A phosphatase: a rate-limiting oncogene that determines genomic stability. Cancer Res 68(5): 1251–1253

    CAS  PubMed  Google Scholar 

  9. Kristjansdottir K, Rudolph J (2004) Cdc25 phosphatases and cancer. Chem Biol 11(8): 1043–1051

    CAS  PubMed  Google Scholar 

  10. Donzelli M, Draetta GF (2003) Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep 4(7):671–677

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Sacco E, Hasan MM, Alberghina L, Vanoni M (2012) Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnol Adv 30(1): 73–98

    CAS  PubMed  Google Scholar 

  12. Ohi R, Gould KL (1999) Regulating the onset of mitosis. Curr Opin Cell Biol 11(2): 267–273

    CAS  PubMed  Google Scholar 

  13. Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15(17):2177–2196

    CAS  PubMed  Google Scholar 

  14. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410(6830): 842–847

    CAS  PubMed  Google Scholar 

  15. Bartek J, Lukas J (2001) Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol 13(6):738–747

    CAS  PubMed  Google Scholar 

  16. Deckbar D, Jeggo PA, Lobrich M (2011) Understanding the limitations of radiation-induced cell cycle checkpoints. Crit Rev Biochem Mol Biol 46(4):271–283

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Brown EJ, Baltimore D (2003) Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev 17(5): 615–628

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277(5331): 1501–1505

    CAS  PubMed  Google Scholar 

  19. Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, Elledge SJ (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277(5331): 1497–1501

    CAS  PubMed  Google Scholar 

  20. Deckbar D, Stiff T, Koch B, Reis C, Lobrich M, Jeggo PA (2010) The limitations of the G1-S checkpoint. Cancer Res 70(11): 4412–4421

    CAS  PubMed  Google Scholar 

  21. Hitomi M, Yang K, Stacey AW, Stacey DW (2008) Phosphorylation of cyclin D1 regulated by ATM or ATR controls cell cycle progression. Mol Cell Biol 28(17):5478–5493

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Pontano LL, Aggarwal P, Barbash O, Brown EJ, Bassing CH, Diehl JA (2008) Genotoxic stress-induced cyclin D1 phosphorylation and proteolysis are required for genomic stability. Mol Cell Biol 28(23):7245–7258

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Di Leonardo A, Linke SP, Clarkin K, Wahl GM (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8(21):2540–2551

    PubMed  Google Scholar 

  24. Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y, Kastan MB, Katzir E, Oren M (2001) ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 15(9):1067–1077

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Zhang Y, Xiong Y (2001) A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 292(5523):1910–1915

    CAS  PubMed  Google Scholar 

  26. Chehab NH, Malikzay A, Appel M, Halazonetis TD (2000) Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 14(3):278–288

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287(5459):1824–1827

    CAS  PubMed  Google Scholar 

  28. Shieh SY, Ahn J, Tamai K, Taya Y, Prives C (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14(3):289–300

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512

    CAS  PubMed  Google Scholar 

  30. Agami R, Bernards R (2000) Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage. Cell 102(1):55–66

    CAS  PubMed  Google Scholar 

  31. Fabbro M, Savage K, Hobson K, Deans AJ, Powell SN, McArthur GA, Khanna KK (2004) BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J Biol Chem 279(30):31251–31258

    CAS  PubMed  Google Scholar 

  32. Wahl GM, Linke SP, Paulson TG, Huang LC (1997) Maintaining genetic stability through TP53 mediated checkpoint control. Cancer Surv 29:183–219

    CAS  PubMed  Google Scholar 

  33. Yamauchi M, Oka Y, Yamamoto M, Niimura K, Uchida M, Kodama S, Watanabe M, Sekine I, Yamashita S, Suzuki K (2008) Growth of persistent foci of DNA damage checkpoint factors is essential for amplification of G1 checkpoint signaling. DNA Repair (Amst) 7(3):405–417

    CAS  Google Scholar 

  34. Stevens C, Smith L, La Thangue NB (2003) Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 5(5):401–409

    CAS  PubMed  Google Scholar 

  35. Inoue Y, Kitagawa M, Taya Y (2007) Phosphorylation of pRB at Ser612 by Chk1/2 leads to a complex between pRB and E2F-1 after DNA damage. EMBO J 26(8):2083–2093

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Carnevale J, Palander O, Seifried LA, Dick FA (2012) DNA damage signals through differentially modified E2F1 molecules to induce apoptosis. Mol Cell Biol 32(5):900–912

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Yoshihara Y, Wu D, Kubo N, Sang M, Nakagawara A, Ozaki T (2012) Inhibitory role of E2F-1 in the regulation of tumor suppressor p53 during DNA damage response. Biochem Biophys Res Commun 421(1):57–63

    CAS  PubMed  Google Scholar 

  38. Cescutti R, Negrini S, Kohzaki M, Halazonetis TD (2010) TopBP1 functions with 53BP1 in the G1 DNA damage checkpoint. EMBO J 29(21):3723–3732

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Kumagai A, Lee J, Yoo HY, Dunphy WG (2006) TopBP1 activates the ATR-ATRIP complex. Cell 124(5):943–955

    CAS  PubMed  Google Scholar 

  40. Mordes DA, Glick GG, Zhao R, Cortez D (2008) TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev 22(11):1478–1489

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Girard PM, Riballo E, Begg AC, Waugh A, Jeggo PA (2002) Nbs1 promotes ATM dependent phosphorylation events including those required for G1/S arrest. Oncogene 21(27): 4191–4199

    CAS  PubMed  Google Scholar 

  42. Labib K, De Piccoli G (2011) Surviving chromosome replication: the many roles of the S-phase checkpoint pathway. Philos Trans R Soc Lond B Biol Sci 366(1584):3554–3561

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Grallert B, Boye E (2008) The multiple facets of the intra-S checkpoint. Cell Cycle 7(15): 2315–2320

    CAS  PubMed  Google Scholar 

  44. Rouse J, Jackson SP (2002) Interfaces between the detection, signaling, and repair of DNA damage. Science 297(5581):547–551

    CAS  PubMed  Google Scholar 

  45. Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300(5625):1542–1548

    CAS  PubMed  Google Scholar 

  46. Namiki Y, Zou L (2006) ATRIP associates with replication protein A-coated ssDNA through multiple interactions. Proc Natl Acad Sci U S A 103(3):580–585

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Kondo T, Wakayama T, Naiki T, Matsumoto K, Sugimoto K (2001) Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science 294(5543):867–870

    CAS  PubMed  Google Scholar 

  48. Melo JA, Cohen J, Toczyski DP (2001) Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev 15(21):2809–2821

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Matsuno K, Kumano M, Kubota Y, Hashimoto Y, Takisawa H (2006) The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase alpha in the initiation of DNA replication. Mol Cell Biol 26(13):4843–4852

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA, Elledge SJ (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14(12): 1448–1459

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Zhao H, Watkins JL, Piwnica-Worms H (2002) Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc Natl Acad Sci U S A 99(23):14795–14800

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Liu H, Takeda S, Kumar R, Westergard TD, Brown EJ, Pandita TK, Cheng EH, Hsieh JJ (2010) Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467(7313):343–346

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Liu H, Cheng EH, Hsieh JJ (2007) Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev 21(19):2385–2398

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Sorensen CS, Syljuasen RG, Falck J, Schroeder T, Ronnstrand L, Khanna KK, Zhou BB, Bartek J, Lukas J (2003) Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 3(3):247–258

    CAS  PubMed  Google Scholar 

  55. Liu P, Barkley LR, Day T, Bi X, Slater DM, Alexandrow MG, Nasheuer HP, Vaziri C (2006) The Chk1-mediated S-phase checkpoint targets initiation factor Cdc45 via a Cdc25A/Cdk2-independent mechanism. J Biol Chem 281(41):30631–30644

    CAS  PubMed  Google Scholar 

  56. Deckbar D, Birraux J, Krempler A, Tchouandong L, Beucher A, Walker S, Stiff T, Jeggo P, Lobrich M (2007) Chromosome breakage after G2 checkpoint release. J Cell Biol 176(6):749–755

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Trenz K, Errico A, Costanzo V (2008) Plx1 is required for chromosomal DNA replication under stressful conditions. EMBO J 27(6): 876–885

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Yoo HY, Shevchenko A, Shevchenko A, Dunphy WG (2004) Mcm2 is a direct substrate of ATM and ATR during DNA damage and DNA replication checkpoint responses. J Biol Chem 279(51):53353–53364

    CAS  PubMed  Google Scholar 

  59. Ge XQ, Blow JJ (2010) Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J Cell Biol 191(7):1285–1297

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Leman AR, Noguchi C, Lee CY, Noguchi E (2010) Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion. J Cell Sci 123(Pt 5):660–670

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Nedelcheva MN, Roguev A, Dolapchiev LB, Shevchenko A, Taskov HB, Stewart AF, Stoynov SS (2005) Uncoupling of unwinding from DNA synthesis implies regulation of MCM helicase by Tof1/Mrc1/Csm3 checkpoint complex. J Mol Biol 347(3):509–521

    CAS  PubMed  Google Scholar 

  62. Lobrich M, Jeggo PA (2007) The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer 7(11):861–869

    PubMed  Google Scholar 

  63. Errico A, Costanzo V, Hunt T (2007) Tipin is required for stalled replication forks to resume DNA replication after removal of aphidicolin in Xenopus egg extracts. Proc Natl Acad Sci U S A 104(38):14929–14934

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, Ashikari T, Sugimoto K, Shirahige K (2003) S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424(6952):1078–1083

    CAS  PubMed  Google Scholar 

  65. Smith KD, Fu MA, Brown EJ (2009) Tim-Tipin dysfunction creates an indispensible reliance on the ATR-Chk1 pathway for continued DNA synthesis. J Cell Biol 187(1):15–23

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, Edmondson RD, Calzada A, Labib K (2009) A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J 28(19):2992–3004

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Leman AR, Noguchi E (2012) Local and global functions of Timeless and Tipin in replication fork protection. Cell Cycle 11(21): 3945–3955

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Yao G, Lee TJ, Mori S, Nevins JR, You L (2008) A bistable Rb-E2F switch underlies the restriction point. Nat Cell Biol 10(4):476–482

    CAS  PubMed  Google Scholar 

  69. Shimmoto M, Matsumoto S, Odagiri Y, Noguchi E, Russell P, Masai H (2009) Interactions between Swi1-Swi3, Mrc1 and S phase kinase, Hsk1 may regulate cellular responses to stalled replication forks in fission yeast. Genes Cells 14(6):669–682

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Yoshizawa-Sugata N, Masai H (2007) Human Tim/Timeless-interacting protein, Tipin, is required for efficient progression of S phase and DNA replication checkpoint. J Biol Chem 282(4):2729–2740

    CAS  PubMed  Google Scholar 

  71. Szyjka SJ, Viggiani CJ, Aparicio OM (2005) Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol Cell 19(5):691–697

    CAS  PubMed  Google Scholar 

  72. Tourriere H, Versini G, Cordon-Preciado V, Alabert C, Pasero P (2005) Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol Cell 19(5):699–706

    CAS  PubMed  Google Scholar 

  73. Hodgson B, Calzada A, Labib K (2007) Mrc1 and Tof1 regulate DNA replication forks in different ways during normal S phase. Mol Biol Cell 18(10):3894–3902

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Lou H, Komata M, Katou Y, Guan Z, Reis CC, Budd M, Shirahige K, Campbell JL (2008) Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol Cell 32(1):106–117

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Chou DM, Elledge SJ (2006) Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function. Proc Natl Acad Sci U S A 103(48):18143–18147

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Luke-Glaser S, Luke B, Grossi S, Constantinou A (2010) FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling. EMBO J 29(4):795–805

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Zhang YW, Otterness DM, Chiang GG, Xie W, Liu YC, Mercurio F, Abraham RT (2005) Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol Cell 19(5):607–618

    CAS  PubMed  Google Scholar 

  78. Mailand N, Bekker-Jensen S, Bartek J, Lukas J (2006) Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol Cell 23(3): 307–318

    CAS  PubMed  Google Scholar 

  79. Mamely I, van Vugt MA, Smits VA, Semple JI, Lemmens B, Perrakis A, Medema RH, Freire R (2006) Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr Biol 16(19): 1950–1955

    CAS  PubMed  Google Scholar 

  80. Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T, Sherman NE, Pagano M (2006) SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 23(3):319–329

    CAS  PubMed  Google Scholar 

  81. Kramer A, Mailand N, Lukas C, Syljuasen RG, Wilkinson CJ, Nigg EA, Bartek J, Lukas J (2004) Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat Cell Biol 6(9):884–891

    PubMed  Google Scholar 

  82. Loffler H, Lukas J, Bartek J, Kramer A (2006) Structure meets function–centrosomes, genome maintenance and the DNA damage response. Exp Cell Res 312(14):2633–2640

    PubMed  Google Scholar 

  83. Bryant HE, Petermann E, Schultz N, Jemth AS, Loseva O, Issaeva N, Johansson F, Fernandez S, McGlynn P, Helleday T (2009) PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J 28(17):2601–2615

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Hashimoto Y, Ray Chaudhuri A, Lopes M, Costanzo V (2010) Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol Biol 17(11):1305–1311

    CAS  PubMed  Google Scholar 

  85. Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M (2011) Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145(4):529–542

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Lindqvist A, van Zon W, Karlsson Rosenthal C, Wolthuis RM (2007) Cyclin B1-Cdk1 activation continues after centrosome separation to control mitotic progression. PLoS Biol 5(5): e123

    PubMed Central  PubMed  Google Scholar 

  87. Adams KE, Medhurst AL, Dart DA, Lakin ND (2006) Recruitment of ATR to sites of ionising radiation-induced DNA damage requires ATM and components of the MRN protein complex. Oncogene 25(28):3894–3904

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Cuadrado M, Martinez-Pastor B, Fernandez-Capetillo O (2006) ATR activation in response to ionizing radiation: still ATM territory. Cell Div 1(1):7

    PubMed Central  PubMed  Google Scholar 

  89. Warmerdam DO, Kanaar R (2010) Dealing with DNA damage: relationships between checkpoint and repair pathways. Mutat Res 704(1–3):2–11

    CAS  PubMed  Google Scholar 

  90. Shiotani B, Zou L (2009) Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol Cell 33(5):547–558

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J, Jackson SP (2006) ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8(1):37–45

    CAS  PubMed  Google Scholar 

  92. Myers JS, Cortez D (2006) Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem 281(14):9346–9350

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20(15): 1803–1815

    CAS  PubMed  Google Scholar 

  94. Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC (2002) BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 30(3): 285–289

    PubMed  Google Scholar 

  95. Xu B, Kim S, Kastan MB (2001) Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 21(10):3445–3450

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Cortez D, Wang Y, Qin J, Elledge SJ (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286(5442): 1162–1166

    CAS  PubMed  Google Scholar 

  97. Pandita TK (2006) Role of mammalian Rad9 in genomic stability and ionizing radiation response. Cell Cycle 5(12):1289–1291

    CAS  PubMed  Google Scholar 

  98. Pandita RK, Sharma GG, Laszlo A, Hopkins KM, Davey S, Chakhparonian M, Gupta A, Wellinger RJ, Zhang J, Powell SN, Roti Roti JL, Lieberman HB, Pandita TK (2006) Mammalian Rad9 plays a role in telomere stability, S- and G2-phase-specific cell survival, and homologous recombinational repair. Mol Cell Biol 26(5):1850–1864

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Dalal SN, Schweitzer CM, Gan J, DeCaprio JA (1999) Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Mol Cell Biol 19(6): 4465–4479

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Takizawa CG, Morgan DO (2000) Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol 12(6):658–665

    CAS  PubMed  Google Scholar 

  101. Marples B (2004) Is low-dose hyper-radiosensitivity a measure of G2-phase cell radiosensitivity? Cancer Metastasis Rev 23 (3–4):197–207

    CAS  PubMed  Google Scholar 

  102. Marples B, Wouters BG, Collis SJ, Chalmers AJ, Joiner MC (2004) Low-dose hyper-radiosensitivity: a consequence of ineffective cell cycle arrest of radiation-damaged G2-phase cells. Radiat Res 161(3):247–255

    CAS  PubMed  Google Scholar 

  103. Chung JH, Bunz F (2010) Cdk2 is required for p53-independent G2/M checkpoint control. PLoS Genet 6(2):e1000863

    PubMed Central  PubMed  Google Scholar 

  104. Borlado LR, Mendez J (2008) CDC6: from DNA replication to cell cycle checkpoints and oncogenesis. Carcinogenesis 29(2):237–243

    CAS  PubMed  Google Scholar 

  105. Clay-Farrace L, Pelizon C, Santamaria D, Pines J, Laskey RA (2003) Human replication protein Cdc6 prevents mitosis through a checkpoint mechanism that implicates Chk1. EMBO J 22(3):704–712

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Lau E, Zhu C, Abraham RT, Jiang W (2006) The functional role of Cdc6 in S-G2/M in mammalian cells. EMBO Rep 7(4): 425–430

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Liu L, Choi JH, Yim H, Choi JS, Park BD, Cho SJ, Lee SK (2009) ATR (AT mutated Rad3 related) activity stabilizes Cdc6 and delays G2/M-phase entry during hydroxyurea-induced S-phase arrest of HeLa cells. Int J Biochem Cell Biol 41(6):1410–1420

    CAS  PubMed  Google Scholar 

  108. Oehlmann M, Score AJ, Blow JJ (2004) The role of Cdc6 in ensuring complete genome licensing and S phase checkpoint activation. J Cell Biol 165(2):181–190

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Fersht N, Hermand D, Hayles J, Nurse P (2007) Cdc18/CDC6 activates the Rad3-dependent checkpoint in the fission yeast. Nucleic Acids Res 35(16):5323–5337

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Shibata A, Barton O, Noon AT, Dahm K, Deckbar D, Goodarzi AA, Lobrich M, Jeggo PA (2010) Role of ATM and the damage response mediator proteins 53BP1 and MDC1 in the maintenance of G(2)/M checkpoint arrest. Mol Cell Biol 30(13): 3371–3383

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Yu X, Wu LC, Bowcock AM, Aronheim A, Baer R (1998) The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem 273(39):25388–25392

    CAS  PubMed  Google Scholar 

  112. Huertas P, Jackson SP (2009) Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J Biol Chem 284(14):9558–9565

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Huertas P, Cortes-Ledesma F, Sartori AA, Aguilera A, Jackson SP (2008) CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455 (7213):689–692

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, Baer R, Lukas J, Jackson SP (2007) Human CtIP promotes DNA end resection. Nature 450(7169):509–514

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Chen L, Nievera CJ, Lee AY, Wu X (2008) Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem 283(12):7713–7720

    CAS  PubMed  Google Scholar 

  116. Wu-Baer F, Baer R (2001) Effect of DNA damage on a BRCA1 complex. Nature 414(6859):36

    CAS  PubMed  Google Scholar 

  117. Din S, Brill SJ, Fairman MP, Stillman B (1990) Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev 4(6):968–977

    CAS  PubMed  Google Scholar 

  118. Anantha RW, Vassin VM, Borowiec JA (2007) Sequential and synergistic modification of human RPA stimulates chromosomal DNA repair. J Biol Chem 282(49):35910–35923

    CAS  PubMed  Google Scholar 

  119. Bahassi EM, Ovesen JL, Riesenberg AL, Bernstein WZ, Hasty PE, Stambrook PJ (2008) The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene 27(28): 3977–3985

    CAS  PubMed  Google Scholar 

  120. Esashi F, Christ N, Gannon J, Liu Y, Hunt T, Jasin M, West SC (2005) CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434(7033):598–604

    CAS  PubMed  Google Scholar 

  121. Wang G, Tong X, Weng S, Zhou H (2012) Multiple phosphorylation of Rad9 by CDK is required for DNA damage checkpoint activation. Cell Cycle 11(20):3792–3800

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Oleg Alekseev for editing and to members of the Clifford and Noguchi laboratories for helpful discussions and to W.W. Smith Foundation and the PA Tobacco Settlement Funds for research support. We apologize to colleagues whose research we have failed to cite due to the breadth of the topics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Azizkhan-Clifford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Beishline, K., Azizkhan-Clifford, J. (2014). Interplay Between the Cell Cycle and Double-Strand Break Response in Mammalian Cells. In: Noguchi, E., Gadaleta, M. (eds) Cell Cycle Control. Methods in Molecular Biology, vol 1170. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0888-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0888-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0887-5

  • Online ISBN: 978-1-4939-0888-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics