Skip to main content

Chromatin Fractionation Analysis of Licensing Factors in Mammalian Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1170))

Abstract

ORC, Cdc6, Cdt1, and MCM2-7 are replication-licensing factors, which play a central role in the once-per-cell cycle control of DNA replication. ORC, Cdc6, and Cdt1 collaborate to load MCM2-7 onto replication origins in order to license them for replication. MCM2-7 is a DNA helicase directly involved in DNA replication and dissociates from DNA as S phase progresses and each replicon is replicated. In the cell cycle, the loading of MCM2-7 is restricted during the end of mitosis and the G1 phase. Thus, the levels of chromatin-bound MCM2-7 and its loaders oscillate during the cell cycle. Chromatin association of these factors can be analyzed by separating a cell lysate into soluble and chromatin-enriched insoluble fractions in mammalian cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374

    Article  CAS  PubMed  Google Scholar 

  2. Nishitani H, Lygerou Z (2002) Control of DNA replication licensing in a cell cycle. Genes Cells 7(6):523–534

    Article  CAS  PubMed  Google Scholar 

  3. Blow JJ, Dutta A (2005) Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 6(6):476–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF (2009) Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139(4):719–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ishimi Y (1997) A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J Biol Chem 272(39):24508–24513

    Article  CAS  PubMed  Google Scholar 

  6. Masai H, Arai K (2002) Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J Cell Physiol 190(3):287–296

    Article  CAS  PubMed  Google Scholar 

  7. Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37(2):247–258

    CAS  PubMed  Google Scholar 

  8. Waga S, Stillman B (1998) The DNA replication fork in eukaryotic cells. Annu Rev Biochem 67:721–751

    Article  CAS  PubMed  Google Scholar 

  9. Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M (2010) Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 79:89–130

    Article  CAS  PubMed  Google Scholar 

  10. Leman AR, Noguchi E (2013) The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes (Basel) 4(1):1–32

    Article  Google Scholar 

  11. Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, Hurwitz J, van Oijen A, Scharer OD, Walter JC (2011) Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146(6):931–941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Machida YJ, Hamlin JL, Dutta A (2005) Right place, right time, and only once: replication initiation in metazoans. Cell 123(1):13–24

    Article  CAS  PubMed  Google Scholar 

  13. Arias EE, Walter JC (2007) Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 21(5):497–518

    Article  CAS  PubMed  Google Scholar 

  14. Nishitani H, Taraviras S, Lygerou Z, Nishimoto T (2001) The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S-phase. J Biol Chem 276(48):44905–44911

    Article  CAS  PubMed  Google Scholar 

  15. Mendez J, Stillman B (2000) Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 20(22):8602–8612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Mendez J, Zou-Yang XH, Kim SY, Hidaka M, Tansey WP, Stillman B (2002) Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol Cell 9(3):481–491

    Article  CAS  PubMed  Google Scholar 

  17. DePamphilis ML (2005) Cell cycle dependent regulation of the origin recognition complex. Cell Cycle 4(1):70–79

    CAS  PubMed  Google Scholar 

  18. Clijsters L, Ogink J, Wolthuis R (2013) The spindle checkpoint, APC/CC(dc20), and APC/CC(dh1) play distinct roles in connecting mitosis to S phase. J Cell Biol 201(7):1013–1026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Petersen BO, Wagener C, Marinoni F, Kramer ER, Melixetian M, Lazzerini Denchi E, Gieffers C, Matteucci C, Peters JM, Helin K (2000) Cell cycle- and cell growth-regulated proteolysis of mammalian CDC6 is dependent on APC-CDH1. Genes Dev 14(18):2330–2343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Saha P, Chen J, Thome KC, Lawlis SJ, Hou ZH, Hendricks M, Parvin JD, Dutta A (1998) Human CDC6/Cdc18 associates with Orc1 and cyclin-cdk and is selectively eliminated from the nucleus at the onset of S phase. Mol Cell Biol 18(5):2758–2767

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Fujita M, Yamada C, Tsurumi T, Hanaoka F, Matsuzawa K, Inagaki M (1998) Cell cycle- and chromatin binding state-dependent phosphorylation of human MCM heterohexameric complexes. A role for cdc2 kinase. J Biol Chem 273(27):17095–17101

    Article  CAS  PubMed  Google Scholar 

  22. Nishitani H, Ohtsubo M, Yamashita K, Iida H, Pines J, Yasudo H, Shibata Y, Hunter T, Nishimoto T (1991) Loss of RCC1, a nuclear DNA-binding protein, uncouples the completion of DNA replication from the activation of cdc2 protein kinase and mitosis. EMBO J 10(6):1555–1564

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI and MEXT KAKENHI, Grant in Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Nishitani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nishitani, H., Morino, M., Murakami, Y., Maeda, T., Shiomi, Y. (2014). Chromatin Fractionation Analysis of Licensing Factors in Mammalian Cells. In: Noguchi, E., Gadaleta, M. (eds) Cell Cycle Control. Methods in Molecular Biology, vol 1170. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0888-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0888-2_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0887-5

  • Online ISBN: 978-1-4939-0888-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics