Skip to main content

Crystallization of Mouse RIG-I ATPase Domain: In Situ Proteolysis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1169))

Abstract

RIG-I is a key pattern recognition receptor that recognizes cytoplasmic viral RNA. Upon ligand binding, it undergoes a conformational change that induces an active signaling conformation. However, the details of this conformational change remain elusive until high-resolution crystal structures of different functional conformations are available. X-ray crystallography is a powerful tool to study structure–function relationships, but crystallization is often the limiting step of the method. Here, we describe the in situ in-drop proteolysis of RIG-I that yielded crystals of the ATPase domain of mouse RIG-I suitable for structure determination.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820

    Article  CAS  PubMed  Google Scholar 

  2. Yoneyama M et al (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5(7):730–737

    Article  CAS  PubMed  Google Scholar 

  3. Kang DC et al (2002) mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci U S A 99(2):637–642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kovacsovics M et al (2002) Overexpression of Helicard, a CARD-containing helicase cleaved during apoptosis, accelerates DNA degradation. Curr Biol 12(10):838–843

    Article  CAS  PubMed  Google Scholar 

  5. Rothenfusser S et al (2005) The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J Immunol 175(8):5260–5268

    Article  CAS  PubMed  Google Scholar 

  6. Yoneyama M, Fujita T (2008) Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity 29(2):178–181

    Article  CAS  PubMed  Google Scholar 

  7. Saito T et al (2007) Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A 104(2):582–587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Yoneyama M et al (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175(5):2851–2858

    Article  CAS  PubMed  Google Scholar 

  9. Li X et al (2009) The RIG-I-like receptor LGP2 recognizes the termini of double-stranded RNA. J Biol Chem 284(20):13881–13891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Li X et al (2009) Structural basis of double-stranded RNA recognition by the RIG-I like receptor MDA5. Arch Biochem Biophys 488:23–33

    Article  CAS  PubMed  Google Scholar 

  11. Lu C et al (2010) Crystal structure of RIG-I C-terminal domain bound to blunt-ended double-strand RNA without 5′ triphosphate. Nucleic Acids Res 39:1565–1575

    Article  PubMed Central  PubMed  Google Scholar 

  12. Wang Y et al (2010) Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat Struct Mol Biol 17:781–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hornung V et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997

    Article  PubMed  Google Scholar 

  14. Pichlmair A et al (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314(5801):997–1001

    Article  CAS  PubMed  Google Scholar 

  15. Schlee M et al (2009) Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31:25–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Cui S et al (2008) The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol Cell 29(2):169–179

    Article  CAS  PubMed  Google Scholar 

  17. Lu C et al (2010) The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure 18(8):1032–1043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kawai T et al (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6(10):981–988

    Article  CAS  PubMed  Google Scholar 

  19. Xu LG et al (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19(6):727–740

    Article  CAS  PubMed  Google Scholar 

  20. Seth RB et al (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122(5):669–682

    Article  CAS  PubMed  Google Scholar 

  21. Meylan E et al (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437(7062):1167–1172

    Article  CAS  PubMed  Google Scholar 

  22. Gack MU et al (2007) TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446(7138):916–920

    Article  CAS  PubMed  Google Scholar 

  23. Zeng W et al (2010) Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141(2):315–330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Bamming D, Horvath CM (2009) Regulation of signal transduction by enzymatically inactive antiviral RNA helicase proteins MDA5, RIG-I, and LGP2. J Biol Chem 284(15):9700–9712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Civril F et al (2011) The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling. EMBO Rep 12(11):1127–1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Jiang F et al (2011) Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479(7373):423–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kowalinski E et al (2011) Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147(2):423–435

    Article  CAS  PubMed  Google Scholar 

  28. Lu C et al (2011) Crystal structure of RIG-I C-terminal domain bound to blunt-ended double-strand RNA without 5′ triphosphate. Nucleic Acids Res 39(4):1565–1575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Luo D et al (2011) Structural insights into RNA recognition by RIG-I. Cell 147(2):409–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Dong A et al (2007) In situ proteolysis for protein crystallization and structure determination. Nat Methods 4(12):1019–1021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wernimont A, Edwards A (2009) In situ proteolysis to generate crystals for structure determination: an update. PLoS One 4(4):e5094

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by National Institutes of Health grant U19AI083025 and grants from the Deutsche Forschungsgemeinschaft (DFG HO2489/3 and SFB455) and financial support from Center for Integrated Protein Science Munich to KPH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Peter Hopfner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Civril, F., Hopfner, KP. (2014). Crystallization of Mouse RIG-I ATPase Domain: In Situ Proteolysis. In: Anders, HJ., Migliorini, A. (eds) Innate DNA and RNA Recognition. Methods in Molecular Biology, vol 1169. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0882-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0882-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0881-3

  • Online ISBN: 978-1-4939-0882-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics