Skip to main content

A Modular Approach to Suppression Assays: TLR Ligands, Conditioned Medium, and Viral Infection

  • Protocol
  • First Online:
Innate DNA and RNA Recognition

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1169))

  • 1695 Accesses

Abstract

The suppressive function of regulatory T-cells (Treg) requires precise control to allow an efficient adaption of the T-cell response to the requirements of the immune defense. In the setting of infection, an abrogation of the suppressive effect of Treg on the activation and proliferation of T-effector (Teff) cells is a central precondition to allow fast and efficient clearance of the infectious agent. Experimentally, the suppressive function of Treg on Teff can be indirectly measured in coculture proliferation assays. This versatile tool provides a readout of T cell proliferation in the presence of Treg through the measurement of a proliferation marker such as the incorporation of radioactively labeled thymidine (3H Thymidine), carboxyfluorescein succinimidyl ester (CFSE) or 5-Bromo-2′-deoxyuridine (BrdU). In a modular approach, the culture conditions can thereby be adapted to evaluate the effect of any cell type, live and inactivated microorganisms, molecularly defined immunostimulatory ligands, and cytokines on the interplay of Teff and Treg function. Here, we demonstrate how the suppression assay can be used as a multifunctional tool to provide insights into the interaction of Treg with Teff under a variety of conditions in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bopp T, Becker C, Klein M et al (2007) Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med 204:1303–1310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6: 295–307

    Article  CAS  PubMed  Google Scholar 

  3. Collison LW, Chaturvedi V, Henderson AL et al (2010) IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol 11:1093–1101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057–1061

    Article  CAS  PubMed  Google Scholar 

  5. Zheng Y, Rudensky AY (2007) Foxp3 in control of the regulatory T cell lineage. Nat Immunol 8:457–462

    Article  CAS  PubMed  Google Scholar 

  6. Fontenot JD, Rasmussen JP, Williams LM et al (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329–341

    Article  CAS  PubMed  Google Scholar 

  7. Thornton AM, Shevach EM (1998) CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188: 287–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Takahashi T, Kuniyasu Y, Toda M et al (1998) Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10:1969–1980

    Article  CAS  PubMed  Google Scholar 

  9. Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+CD25+ T cell mediated suppression by dendritic cells. Science 299:1033–1036

    Article  CAS  PubMed  Google Scholar 

  10. Kabelitz D, Wesch D, Oberg HH (2006) Regulation of regulatory T cells: role of dendritic cells and toll-like receptors. Crit Rev Immunol 26:291–306

    Article  CAS  PubMed  Google Scholar 

  11. Anz D, Koelzer VH, Moder S et al (2010) Immunostimulatory RNA blocks suppression by regulatory T cells. J Immunol 184:939–946

    Article  CAS  PubMed  Google Scholar 

  12. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  CAS  PubMed  Google Scholar 

  13. Libermann TA, Baltimore D (1990) Activation of interleukin-6 gene expression through the NF-k B transcription factor. Mol Cell Biol 10:2327–2334

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Hornung V, Guenthner-Biller M, Bourquin C et al (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 3:263–270

    Article  Google Scholar 

  15. Caramalho I, Lopes-Carvalho T, Ostler D et al (2003) Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med 197:403–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Peng G, Guo Z, Kiniwa Y et al (2005) Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309: 1380–1384

    Article  CAS  PubMed  Google Scholar 

  17. Sutmuller RP, den Brok MH, Kramer M et al (2006) Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 116:485–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kurooka M, Kaneda Y (2007) Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells. Cancer Res 67: 227–236

    Article  CAS  PubMed  Google Scholar 

  19. Wurzenberger C, Koelzer VH, Schreiber S et al (2009) Short-term activation induces multifunctional dendritic cells that generate potent antitumor T-cell responses in vivo. Cancer Immunol Immunother 58:901–913

    Article  CAS  PubMed  Google Scholar 

  20. Rußmann E (1993) Colloquium Roche Mol Biochem 4:1–4

    Google Scholar 

  21. Crellin NK, Garcia RV, Hadisfar O et al (2005) Human CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells. J Immunol 175:8051–8059

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor H. Koelzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Koelzer, V.H., Anz, D. (2014). A Modular Approach to Suppression Assays: TLR Ligands, Conditioned Medium, and Viral Infection. In: Anders, HJ., Migliorini, A. (eds) Innate DNA and RNA Recognition. Methods in Molecular Biology, vol 1169. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0882-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0882-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0881-3

  • Online ISBN: 978-1-4939-0882-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics