Skip to main content

Offline and Online “Virtual Lesion” Protocols

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 89))

Abstract

Transcranial Magnetic Stimulation (TMS) can be used to transiently disrupt the function of specified cortical targets. If this disruption is generated prior to the onset of a critical regional function, a suppression or arrest of the said function may result. This method of using TMS to disrupt functions has been dubbed the “virtual lesion” approach. In this chapter, we explore both the mechanistic and functional foundations of this novel technique. After briefly discussing the history and development of this paradigm, we outline practical applications of the “virtual lesion” in clinical, cognitive, and behavioral research. Finally, we offer practical considerations to ensure successful experimentation with and application of this technique.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mottaghy FM, Gangitano M, Horkan C, Chen Y, Pascual-Leone A, Schlaug G (2003) Repetitive TMS temporarily alters brain diffusion. Neurology 60(9):1539–1541

    Article  CAS  PubMed  Google Scholar 

  2. Sack AT, Linden DE (2003) Combining transcranial magnetic stimulation and functional brain imaging in cognitive brain research: possibilities and limitations. Brain Res Rev 43(1):41–56

    Article  PubMed  Google Scholar 

  3. Harris JA, Clifford CW, Miniussi C (2008) The functional effect of transcranial magnetic stimulation: signal suppression or neural noise generation? J Cogn Neurosci 20(4):734–740

    Article  PubMed  Google Scholar 

  4. Walsh V, Cowey A (2000) Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 1(1):73–79

    Article  CAS  PubMed  Google Scholar 

  5. Valero-Cabre A, Payne BR, Pascual-Leone A (2007) Opposite impact on 14C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Exp Brain Res 176(4):603–615

    Article  CAS  PubMed  Google Scholar 

  6. Hilgetag CC, Theoret H, Pascual-Leone A (2001) Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nat Neurosci 4(9):953–957

    Article  CAS  PubMed  Google Scholar 

  7. Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res 133:425–430

    Article  CAS  PubMed  Google Scholar 

  8. Speer AM, Kimbrell TA, Wassermann EM, D Repella J, Willis MW, Herscovitch P et al (2000) Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry 48(12):1133–1141

    Article  CAS  PubMed  Google Scholar 

  9. Fecteau S, Pascual-Leone A, Theoret H (2006) Paradoxical facilitation of attention in healthy humans. Behav Neurol 17(3–4):159–162

    Article  PubMed  Google Scholar 

  10. Silvanto J, Muggleton NG, Cowey A, Walsh V (2007) Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation. Eur J Neurosci 25:1874–1881

    Article  PubMed  Google Scholar 

  11. Robertson EM, Theoret H, Pascual-Leone A (2003) Studies in cognition: the problems solved and created by transcranial magnetic stimulation. J Cogn Neurosci 15(7):948–960

    Article  CAS  PubMed  Google Scholar 

  12. Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10(2):232–237

    Article  CAS  PubMed  Google Scholar 

  13. Pascual-Leone A, Bartres-Faz D, Keenan JP (1999) Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of ‘virtual lesions’. Philos Trans R Soc Lond B Biol Sci 354(1387):1229–1238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hadipour-Niktarash A, Lee CK, Desmond JE, Shadmehr R (2007) Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex. J Neurosci 27(49):13413–13419

    Article  CAS  PubMed  Google Scholar 

  15. Bestmann S, Ruff CC, Blankenburg F, Weiskopf N, Driver J, Rothwell JC (2008) Mapping causal interregional influences with concurrent TMS-fMRI. Exp Brain Res 191(4):383–402

    Article  PubMed  Google Scholar 

  16. Ruff CC, Driver J, Bestmann S (2009) Combining TMS and fMRI: from ‘virtual lesions’ to functional-network accounts of cognition. Cortex 45(9):1043–1049

    Article  PubMed Central  PubMed  Google Scholar 

  17. Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148(1):1–16

    Article  PubMed  Google Scholar 

  18. Thut G, Miniussi C (2009) New insights into rhythmic brain activity from TMS-EEG studies. Trends Cogn Sci 13(4):182–189

    Article  PubMed  Google Scholar 

  19. Lou HC, Luber B, Stanford A, Lisanby SH (2010) Self-specific processing in the default network: a single-pulse TMS study. Exp Brain Res 207(1–2):27–38

    Article  PubMed Central  PubMed  Google Scholar 

  20. Paus T (2005) Inferring causality in brain images: a perturbation approach. Philos Trans R Soc Lond B Biol Sci 360(1457):1109–1114

    Article  PubMed Central  PubMed  Google Scholar 

  21. Hampson M, Hoffman RE (2010) Transcranial magnetic stimulation and connectivity mapping: tools for studying the neural bases of brain disorders. Front Syst Neurosci 4:40

    PubMed Central  PubMed  Google Scholar 

  22. Levit-Binnun N, Litvak V, Pratt H, Moses E, Zaroor M, Peled A (2007) Differences in TMS-evoked responses between schizophrenia patients and healthy controls can be observed without a dedicated EEG system. Clin Neurophysiol 121(3):332–339

    Article  Google Scholar 

  23. Ferrarelli F et al (2008) Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: a TMS/EEG study. Am J Psychiatry 165(8):996–1005

    Article  PubMed  Google Scholar 

  24. Oberman L, Eldaief M, Fecteau S, Ifert-Miller F, Tormos JM, Pascual-Leone A (2012) Abnormal modulation of corticospinal excitability in adults with Asperger’s syndrome. Eur J Neurosci 36(6):2782–2788

    Article  PubMed Central  PubMed  Google Scholar 

  25. Pascual-Leone A, Gates JR, Dhuna A (1991) Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology 41(5):697–702

    Article  CAS  PubMed  Google Scholar 

  26. Jin Y, Hilgetag C (2008) Perturbation of visuospatial attention by high-frequency offline rTMS. Exp Brain Res 189:121–128

    Article  PubMed  Google Scholar 

  27. Siebner HR, Hartwigsen G, Kassuba T, Rothwell JC (2009) How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex 45(9):1035–1042

    Article  PubMed Central  PubMed  Google Scholar 

  28. Silvanto J, Muggleton NG (2008) New light through old windows: moving beyond the “virtual lesion” approach to transcranial magnetic stimulation. Neuroimage 39:549–552

    Article  PubMed  Google Scholar 

  29. Borckardt JJ, Walker J, Branham RK, Rydin-Gray S, Hunter C, Beeson H, Reeves ST, Madan A, Sackeim H, George MS (2008) Development and evaluation of a portable sham transcranial magnetic stimulation system. Brain Stimul 1(1):52–59

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lu MK, Arai N, Tsai CH, Ziemann U (2012) Movement related cortical potentials of cued versus self-initiated movements: double dissociated modulation by dorsal premotor cortex versus supplementary motor area rTMS. Hum Brain Mapp 33:824–839

    Article  CAS  PubMed  Google Scholar 

  31. Romei V, Driver J, Schyns PG, Thut G (2011) Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Curr Biol 21(4):334–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirley Fecteau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fecteau, S., Eldaief, M. (2014). Offline and Online “Virtual Lesion” Protocols. In: Rotenberg, A., Horvath, J., Pascual-Leone, A. (eds) Transcranial Magnetic Stimulation. Neuromethods, vol 89. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0879-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0879-0_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0878-3

  • Online ISBN: 978-1-4939-0879-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics