Skip to main content

Neuronavigation for Transcranial Magnetic Stimulation

  • Protocol
  • First Online:
Transcranial Magnetic Stimulation

Part of the book series: Neuromethods ((NM,volume 89))

Abstract

In order to ensure successful application of transcranial magnetic stimulation (TMS), practitioners must be certain that they are targeting the correct cortical location. To aid in this, a number of clinicians and practitioners have begun utilizing various neuronavigation systems to track coil and participant-head position in space for the duration of a stimulation session. In this chapter, I explore the history of neuronavigation and the developments that made combining this technology with TMS possible. Following this, I discuss the practical aspects of properly utilizing a neuronavigation system: including MRI acquisition, 3D-reconstruction, head and coil co-registration, cortical targeting, motion tracking, and electric field modeling. I conclude with a brief discussion of incorporating robotic assistance in coil positioning and tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gugino LD et al (2001) Transcranial magnetic stimulation coregistered with MRI: a comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials. Clin Neurophysiol 112:1781–1792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Paus T (1998) Imaging the brain before, during, and after transcranial magnetic stimulation. Neuropsychologia 37:219–224

    Article  Google Scholar 

  3. Comeau R, Peters TM, Paus T (1999) Optically based frameless stereotaxy for image guided transcranial magnetic stimulation (TMS). Neuroimage 9(6):S225

    Google Scholar 

  4. Neggers SF et al (2004) A stereotactic method for image-guided transcranial magnetic stimulation validated with fMRI and motor-evoked potentials. Neuroimage 21:1805–1817

    Article  CAS  PubMed  Google Scholar 

  5. Hannula H et al (2005) Somatotopic blocking of sensation with navigated transcranial magnetic stimulation of the primary somatosensory cortex. Hum Brain Mapp 26:100–109

    Article  PubMed  Google Scholar 

  6. Julkunen P et al (2009) Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage 44:790–795

    Article  PubMed  Google Scholar 

  7. Schonfeldt-Lecuona C et al (2005) Accuracy of stereotaxic positioning of transcranial magnetic stimulation. Brain Topogr 17:253–259

    Article  PubMed  Google Scholar 

  8. Sparing R, Buelte D, Meister IG, Paus T, Fink GR (2008) Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Hum Brain Mapp 29:82–96

    Article  PubMed  Google Scholar 

  9. Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development: the international consortium for brain mapping (ICBM). Neuroimage 2:89–101

    Article  CAS  PubMed  Google Scholar 

  10. Cantarero G et al (2011) Disrupting the ventral premotor cortex interferes with the contribution of action observation to use-dependent plasticity. J Cogn Neurosci 23:3757–3766

    Article  PubMed Central  PubMed  Google Scholar 

  11. Dormal V, Andres M, Pesenti M (2012) Contribution of the right intraparietal sulcus to numerosity and length processing: an fMRI-guided TMS study. Cortex 48(5):623–629

    Article  PubMed  Google Scholar 

  12. Andres M, Pelgrims B, Michaux N, Olivier E, Pesenti M (2011) Role of distinct parietal areas in arithmetic: an fMRI-guided TMS study. Neuroimage 54:3048–3056

    Article  PubMed  Google Scholar 

  13. Beauchamp MS, Nath AR, Pasalar S (2010) fMRI-Guided transcranial magnetic stimulation reveals that the superior temporal sulcus is a cortical locus of the McGurk effect. J Neurosci 30:2414–2417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bastos AC et al (1999) Diagnosis of subtle focal dysplastic lesions: curvilinear reformatting from three‐dimensional magnetic resonance imaging. Ann Neurol 46:88–94

    Article  CAS  PubMed  Google Scholar 

  15. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Thieme, New York

    Google Scholar 

  16. Friston KJ, Ashburner J, Kiebel SJ, Nichols TE, Penny WD (2007) Statistical parametric mapping: the analysis of functional brain images. Academic, London, p vii 647

    Google Scholar 

  17. Lotze M (2010) Functional lesions of the motor system with TMS–a challenge for individual functional mapping. Restor Neurol Neurosci 28:469–476

    CAS  PubMed  Google Scholar 

  18. Thakral PP, Slotnick SD (2011) Disruption of MT impairs motion processing. Neurosci Lett 490:226–230

    Article  CAS  PubMed  Google Scholar 

  19. Sack AT et al (2009) Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. J Cogn Neurosci 21: 207–221

    Article  PubMed  Google Scholar 

  20. Wagner T, Rushmore J, Eden U, Valero-Cabre A (2009) Biophysical foundations underlying TMS: setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex 45:1025–1034

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ruohonen J, Ilmoniemi RJ (2001) Physical principles for transcranial magnetic stimulation. In: Handbook of transcranial magnetic stimulation. . Edited by A. Pascual-Leone, N.J. Davey, J. Rothwell, E.M. Wasseran, B.K. Puri, Arnold, London. ISBN 0340720093. p 17–29

    Google Scholar 

  22. Thielscher A, Kammer T (2002) Linking physics with physiology in TMS: a sphere field model to determine the cortical stimulation site in TMS. Neuroimage 17:1117–1130

    Article  PubMed  Google Scholar 

  23. Cho YS, Suh HS, Lee WH, Kim TS (2010) TMS modeling toolbox for realistic simulation. Conf Proc IEEE Eng Med Biol Soc 2010: 3113–3116

    PubMed  Google Scholar 

  24. Salvador R, Silva S, Basser PJ, Miranda PC (2011) Determining which mechanisms lead to activation in the motor cortex: a modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry. Clin Neurophysiol 122:748–758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Windhoff M, Opitz A, Thielscher A (2013) Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models. Hum Brain Mapp 34:923–935

    Article  PubMed  Google Scholar 

  26. Kantelhardt SR et al (2010) Robot-assisted image-guided transcranial magnetic stimulation for somatotopic mapping of the motor cortex: a clinical pilot study. Acta Neurochir (Wien) 152:333–343

    Article  Google Scholar 

  27. Lancaster JL et al (2004) Evaluation of an image-guided, robotically positioned transcranial magnetic stimulation system. Hum Brain Mapp 22:329–340

    Article  PubMed  Google Scholar 

  28. Matthaus L, Giese A, Wertheimer D, Schweikard A (2006) Planning and analyzing robotized TMS using virtual reality. Stud Health Technol Inform 119:373–378

    PubMed  Google Scholar 

  29. Richter L, Bruder R, Schlaefer A, Schweikard A (2010) Towards direct head navigation for robot-guided transcranial magnetic stimulation using 3D laserscans: Idea, setup and feasibility. Conf Proc IEEE Eng Med Biol Soc 2010: 2283–2286

    PubMed  Google Scholar 

  30. Zorn L, Renaud P, Bayle B, Goffin L, Lebossé C, de Mathelin M, Foucher J (2012) Design and evaluation of a robotic system for transcranial magnetic stimulation. IEEE Trans Biomed Eng 59(3):805–815

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roch Comeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Comeau, R. (2014). Neuronavigation for Transcranial Magnetic Stimulation. In: Rotenberg, A., Horvath, J., Pascual-Leone, A. (eds) Transcranial Magnetic Stimulation. Neuromethods, vol 89. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0879-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0879-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0878-3

  • Online ISBN: 978-1-4939-0879-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics