Skip to main content

Transcranial Magnetic Stimulation (TMS) Clinical Applications: Diagnostics

  • Protocol
  • First Online:
Transcranial Magnetic Stimulation

Part of the book series: Neuromethods ((NM,volume 89))

Abstract

Since its introduction in 1985, transcranial magnetic stimulation (TMS) has become a powerful tool for research as a noninvasive and painless technique to effectively stimulate the human cortex. Over the years, TMS has proven useful not only for the assessment of motor cortex physiology but also for the diagnosis and prognosis of many neurological disorders involving the corticospinal tract. In this chapter, we explore the theoretical and practical considerations of several key diagnostic protocols, including those used to asses motor cortical and corticospinal layout, excitability, and functional integrity. In addition, we illustrate how each of these protocols can be utilized during the diagnostic process of a number of neurological diseases, including stroke, paralysis, myelopathy, spinal cord injury, multiple sclerosis, motoneuron disease, and varied movement disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107

    CAS  PubMed  Google Scholar 

  2. Day BL, Thompson PD, Dick JP, Nakashima K, Marsden CD (1987) Different sites of action of electrical and magnetic stimulation of the human brain. Neurosci Lett 75:101–106

    CAS  PubMed  Google Scholar 

  3. Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD (1991) Stimulation of the human motor cortex through the scalp. Exp Physiol 76:159–200

    CAS  PubMed  Google Scholar 

  4. Rossini PM, Desiato MT, Caramia MD (1992) Age-related changes of motor evoked potentials in healthy humans: non-invasive evaluation of central and peripheral motor tracts excitability and conductivity. Brain Res 593: 14–19

    CAS  PubMed  Google Scholar 

  5. Jalinous R (1991) Technical and practical aspects of magnetic nerve stimulation. J Clin Neurophysiol 8:10–25

    CAS  PubMed  Google Scholar 

  6. Maccabee PJ, Amassian VE, Eberle LP, Cracco RQ (1993) Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation. J Physiol 460:201–219

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Brasil-Neto JP, Cohen LG, Panizza M, Nilsson J, Roth BJ, Hallett M (1991) Optimal focal transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape of the induced current pulse, and stimulus intensity. J Clin Neurophysiol 9:132–136

    Google Scholar 

  8. Kammer T, Beck S, Erb M, Grodd W (2001) The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation. Clin Neurophysiol 112:2015–2021

    CAS  PubMed  Google Scholar 

  9. Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H (2001) Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clin Neurophysiol 112:250–258

    CAS  PubMed  Google Scholar 

  10. Wolf SL, Butler AJ, Campana GI, Parris TA, Struys DM, Weinstein SR, Weiss P (2004) Intra-subject reliability of parameters contributing to maps generated by transcranial magnetic stimulation in able bodied adults. Clin Neurophysiol 115:1740–1747

    PubMed  Google Scholar 

  11. Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91:79–92

    CAS  PubMed  Google Scholar 

  12. Wassermann EM (2002) Variation in the response to transcranial magnetic brain stimulation in the general population. Clin Neurophysiol 113:1165–1171

    PubMed  Google Scholar 

  13. Pitcher JB, Ogston KM, Miles TS (2003) Age and sex differences in human motor cortex input–output characteristics. J Physiol 546: 605–613

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Koski L, Schrader LM, Wu AD, Stern JM (2005) Normative data on changes in transcranial magnetic stimulation measures over a ten hour period. Clin Neurophysiol 116:2099–2109

    PubMed  Google Scholar 

  15. McConnell KA, Nahas Z, Shastri A, Lorberbaum JP, Kozel FA, Bohning DE, George MS (2001) The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex. Biol Psychiatry 49:454–459

    CAS  PubMed  Google Scholar 

  16. Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, Mills K, Rösler KM, Triggs WJ, Ugawa Y, Ziemann U (2008) The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 119:504–532

    PubMed  Google Scholar 

  17. Siniatchkin M, Groppa S, Siebner H, Stephani U (2006) A single dose of sulthiame induces a selective increase in resting motor threshold in human motor cortex: a transcranial magnetic stimulation study. Epilepsy Res 72:18–24

    CAS  PubMed  Google Scholar 

  18. Ziemann U (2004) TMS and drugs. Clin Neurophysiol 115:1717–1729

    CAS  PubMed  Google Scholar 

  19. Sparing R, Dafotakis M, Buelte D, Meister IG, Noth J (2007) Excitability of human motor and visual cortex before, during, and after hyperventilation. J Appl Physiol 102:406–411

    PubMed  Google Scholar 

  20. Nardone R, Ausserer H, Bratti A, Covi M, Lochner P, Marth R, Tezzon F (2006) Cabergoline reverses cortical hyperexcitability in patients with restless legs syndrome. Acta Neurol Scand 114:244–249

    CAS  PubMed  Google Scholar 

  21. Franca M, Koch G, Mochizuki H, Huang YZ, Rothwell JC (2006) Effects of theta burst stimulation protocols on phosphene threshold. Clin Neurophysiol 117:1808–1813

    PubMed  Google Scholar 

  22. De Carvalho M, Turkman A, Swash M (2003) Motor responses evoked by transcranial magnetic stimulation and peripheral nerve stimulation in the ulnar innervation in amyotrophic lateral sclerosis: the effect of upper and lower motor neuron lesion. J Neurol Sci 210: 83–90

    PubMed  Google Scholar 

  23. Groppa S, Siebner HR, Kurth C, Stephani U, Siniatchkin M (2008) Abnormal response of motor cortex to photic stimulation in idiopathic generalized epilepsy. Epilepsia 49: 2022–2029

    PubMed  Google Scholar 

  24. Reutens DC, Berkovic SF, Macdonell RAL, Baldin PF (1993) Magnetic stimulation of the brain in generalized epilepsy: reversal of cortical hyperexcitability by anticonvulsants. Ann Neurol 34:351–355

    CAS  PubMed  Google Scholar 

  25. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Di Lazzaro V, Oliviero A, Pilato F, Mazzone P, Insola A, Ranieri F et al (2003) Corticospinal volleys evoked by transcranial stimulation of the brain in conscious humans. Neurol Res 25:143–150

    PubMed  Google Scholar 

  27. Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119:265–268

    PubMed  Google Scholar 

  28. Reynolds C, Ashby P (1999) Inhibition in the human motor cortex is reduced just before a voluntary contraction. Neurology 53:730–735

    CAS  PubMed  Google Scholar 

  29. Soto O, Valls-Sole J, Shanahan P, Rothwell J (2006) Reduction of intracortical inhibition in soleus muscle during postural activity. J Neurophysiol 96:1711–1717

    PubMed  Google Scholar 

  30. Floeter MK, Rothwell JC (1999) Releasing the brakes before pressing the gas pedal. Neurology 53:664–665

    CAS  PubMed  Google Scholar 

  31. Ridding MC, Taylor JL, Rothwell JC (1995) The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex. J Physiol 487:541–548

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Kumru H, Soto O, Casanova J, Valls-Sole J (2008) Motor cortex excitability changes during imagery of simple reaction time. Exp Brain Res 30:1433–1436

    Google Scholar 

  33. Ridding MC, Sheean G, Rothwell JC, Inzelberg R, Kujirai T (1995) Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J Neurol Neurosurg Psychiatry 59:493–498

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Ridding MC, Inzelberg R, Rothwell JC (1995) Changes in excitability of motor cortical circuitry in patients with Parkinson’s disease. Ann Neurol 37:181–188

    CAS  PubMed  Google Scholar 

  35. Berardelli A, Rona S, Inghilleri M, Manfredi M (1996) Cortical inhibition in Parkinson’s disease. A study with paired magnetic stimulation. Brain 119:71–77

    PubMed  Google Scholar 

  36. Rösler KM, Petrow E, Mathis J, Arányi Z, Hess CW, Magistris MR (2002) Effect of discharge desynchronization on the size of motor evoked potentials: an analysis. Clin Neurophysiol 113:1680–1687

    PubMed  Google Scholar 

  37. Valls-Solé J, Alvarez R, Tolosa ES (1994) Vibration-induced presynaptic inhibition of the soleus H reflex is temporarily reduced by cortical magnetic stimulation in human subjects. Neurosci Lett 170:149–152

    PubMed  Google Scholar 

  38. Ray JL, McNamara B, Priest A, Boniface SJ (2002) Measuring TMS stimulus/response characteristics from both hemispheres simultaneously for proximal and distal upper limb muscles. J Clin Neurophysiol 19:371–375

    PubMed  Google Scholar 

  39. Möller C, Arai N, Lücke J, Ziemann U (2009) Hysteresis effects on the input–output curve of motor evoked potentials. Clin Neurophysiol 120:1003–1008

    PubMed  Google Scholar 

  40. Magistris MR, Rösler KM, Truffert A, Landis T, Hess CW (1999) A clinical study of motor evoked potentials using a triple stimulation technique. Brain 122:265–279

    PubMed  Google Scholar 

  41. Roth G, Magistris MR (1989) Identification of motor conduction block despite desynchronisation. A method. Electromyogr Clin Neurophysiol 29:305–313

    CAS  PubMed  Google Scholar 

  42. Komissarow L, Rollnik JD, Bogdanova D, Krampfl K, Khabirov FA, Kossev A, Dengler R, Bufler J (2004) Triple stimulation technique (TST) in amyotrophic lateral sclerosis. Clin Neurophysiol 115:356–360

    PubMed  Google Scholar 

  43. Sakuma K, Adachi Y, Fukuda H, Kai T, Nakashima K (2005) Triple stimulation technique in patients with spinocerebellar ataxia type 6. Clin Neurophysiol 116:2586–2591

    PubMed  Google Scholar 

  44. Eusebio A, Azulay JP, Witjas T, Rico A, Attarian S (2007) Assessment of cortico-spinal tract impairment in multiple system atrophy using transcranial magnetic stimulation. Clin Neurophysiol 118:815–823

    CAS  PubMed  Google Scholar 

  45. Rico A, Audoin B, Franques J, Eusebio A, Reuter F, Malikova I, Ali Cherif A, Pouget J, Pelletier J, Attarian S (2009) Motor evoked potentials in clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 15: 355–362

    CAS  PubMed  Google Scholar 

  46. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I (1994) Magnetic stimulation of corticospinal pathways at the foramen magnum level in humans. Ann Neurol 36:618–624

    CAS  PubMed  Google Scholar 

  47. Taylor JL, Gandevia SC (2004) Noninvasive stimulation of the human corticospinal tract. J Appl Physiol 96:1496–1503

    CAS  PubMed  Google Scholar 

  48. Molinuevo JL, Cruz-Martínez A, Graus F, Serra J, Ribalta T, Valls-Solé J (1999) Central motor conduction time in patients with multifocal motor conduction block. Muscle Nerve 22:926–932

    CAS  PubMed  Google Scholar 

  49. Cicinelli P, Pasqualetti P, Zaccagnini M, Traversa R, Oliveri M, Rossini PM (2003) Interhemispheric asymmetries of motor cortex excitability in the postacute stroke stage: a paired-pulse transcranial magnetic stimulation study. Stroke 34:2653–2658

    PubMed  Google Scholar 

  50. Hess CW, Mills KR, Murray NM (1986) Measurement of central motor conduction in multiple sclerosis by magnetic brain stimulation. Lancet 2:355–358

    CAS  PubMed  Google Scholar 

  51. Chen R, Corwell B, Yaseen Z, Hallett M, Cohen LG (1998) Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci 18:3443–3450

    CAS  PubMed  Google Scholar 

  52. Penfield W, Boldrey E (1937) Somatotopic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Google Scholar 

  53. Cohen LG, Hallett M (1988) Noninvasive mapping of human motor cortex. Neurology 38:904–909

    CAS  PubMed  Google Scholar 

  54. Wassermann EM, McShane LM, Hallett M, Cohen LG (1992) Noninvasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol 85: 1–8

    CAS  PubMed  Google Scholar 

  55. Thickbroom GW, Byrnes ML, Mastaglia FL (1999) Methodology and application of TMS mapping. Electroencephalogr Clin Neurophysiol Suppl 51:48–54

    CAS  PubMed  Google Scholar 

  56. Thickbroom G, Sammut F, Mastaglia R (1998) Magnetic stimulation mapping of motor cortex: factors contributing to map area. Electroencephalogr Clin Neurophysiol 109:79–84

    CAS  PubMed  Google Scholar 

  57. Brasil-Neto JP, Cohen LG, Pascual-Leone A, Jabir FK, Wall RT, Hallett M (1992) Rapid reversible modulation of human motor outputs after transient deafferentation of the forearm: a study with transcranial magnetic stimulation. Neurology 42:1302–1306

    CAS  PubMed  Google Scholar 

  58. Darling WG, Wolf SL, Butler AJ (2006) Variability of motor potentials evoked by transcranial magnetic stimulation depends on muscle activation. Exp Brain Res 174:376–385

    PubMed Central  PubMed  Google Scholar 

  59. Cincotta M, Borgheresi A, Balestrieri F, Giovannelli F, Ragazzoni A, Vanni P, Benvenuti F, Zaccara G, Ziemann U (2006) Mechanisms underlying mirror movements in Parkinson’s disease: a transcranial magnetic stimulation study. Mov Disord 21:1019–1025

    PubMed  Google Scholar 

  60. Cincotta M, Ziemann U (2008) Neurophysiology of unimanual motor control and mirror movements. Clin Neurophysiol 119: 744–762

    CAS  PubMed  Google Scholar 

  61. Civardi C, Vicentini R, Collini A, Boccagni C, Cantello R, Monaco F (2009) Motor cortical organization in an adult with hemimegalencephaly and late onset epilepsy. Neurosci Lett 460:126–129

    CAS  PubMed  Google Scholar 

  62. Valls-Solé J, Tolosa E, Marti MJ, Valldeoriola F, Revilla M, Pastor P, Blesa R (2001) Examination of motor output pathways in patients with corticobasal ganglionic degeneration using transcranial magnetic stimulation. Brain 124:1131–1137

    PubMed  Google Scholar 

  63. Martinez M, Brezun JM, Zennou-Azogui Y, Baril N, Xerri C (2009) Sensorimotor training promotes functional recovery and somatosensory cortical map reactivation following cervical spinal cord injury. Eur J Neurosci 30: 2356–2367

    PubMed  Google Scholar 

  64. Karl A, Birbaumer N, Lutzenberger W, Cohen LG, Flor H (2001) Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci 21:3609–3618

    CAS  PubMed  Google Scholar 

  65. Picht T, Mularski S, Kuehn B, Vajkoczy P, Kombos T, Suess O (2009) Navigated transcranial magnetic stimulation for preoperative functional diagnostics in brain tumor surgery. Neurosurgery 65(6 Suppl):93–99

    PubMed  Google Scholar 

  66. Forster MT, Hattingen E, Senft C, Gasser T, Seifert V, Szelényi A (2011) Navigated transcranial magnetic stimulation and functional magnetic resonance imaging: advanced adjuncts in preoperative planning for central region tumors. Neurosurgery 68:1317–1325

    PubMed  Google Scholar 

  67. Picht T, Schmidt S, Brandt S, Frey D, Hannula H, Neuvonen T, Karhu J, Vajkoczy P, Suess O (2011) Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery 69: 581–588

    PubMed  Google Scholar 

  68. Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81:257–262

    CAS  PubMed  Google Scholar 

  69. Cantello R, Gianelli M, Civardi C, Mutani R (1992) Magnetic brain stimulation: the silent period after the motor evoked potential. Neurology 42:1951–1959

    CAS  PubMed  Google Scholar 

  70. Triggs WJ, Macdonell RA, Cros D, Chiappa KH, Shahani BT, Day BJ (1992) Motor inhibition and excitation are independent effects of magnetic cortical stimulation. Ann Neurol 32:345–351

    CAS  PubMed  Google Scholar 

  71. Roick H, von Giesen HJ, Benecke R (1993) On the origin of the postexcitatory inhibition seen after transcranial magnetic brain stimulation in awake human subjects. Exp Brain Res 94:489–498

    CAS  PubMed  Google Scholar 

  72. Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 466:521–534

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Wassermann EM, Pascual-Leone A, Valls-Solé J, Toro C, Cohen LG, Hallett M (1993) Topography of the inhibitory and excitatory responses to transcranial magnetic stimulation in a hand muscle. Electroencephalogr Clin Neurophysiol 89:424–433

    CAS  PubMed  Google Scholar 

  74. Brasil-Neto JP, Cammarota A, Valls-Solé J, Pascual-Leone A, Hallett M, Cohen LG (1995) Role of intracortical mechanisms in the late part of the silent period to transcranial stimulation of the human motor cortex. Acta Neurol Scand 92:383–386

    CAS  PubMed  Google Scholar 

  75. Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 517(2): 591–597

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Nakashima K, Wang Y, Shimoda M, Sakuma K, Takahashi K (1995) Shortened silent period produced by magnetic cortical stimulation in patients with Parkinson’s disease. J Neurol Sci 130:209–214

    CAS  PubMed  Google Scholar 

  77. Ziemann U, Bruns D, Paulus W (1996) Enhancement of human motor cortex inhibition by the dopamine receptor agonist pergolide: evidence from transcranial magnetic stimulation. Neurosci Lett 208:187–190

    CAS  PubMed  Google Scholar 

  78. Cantello R, Tarletti R, Civardi C (2002) Transcranial magnetic stimulation and Parkinson’s disease. Brain Res Brain Res Rev 38:309–327

    PubMed  Google Scholar 

  79. Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Meyer BU, Roricht S, Grafin von Einsiedel H, Kruggel F, Weindl A (1995) Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 118:429–440

    PubMed  Google Scholar 

  81. Taylor JL, Fogel W, Day BL, Rothwell JC (1995) Ipsilateral cortical stimulation inhibited the long-latency response to stretch in the long finger flexors in humans. J Physiol 488: 821–831

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Kato T, Kasai T, Maehara T (2002) Effects of transcranial magnetic stimulation to the reciprocal Ia inhibitory interneurones in the human wrist. Percept Mot Skills 94:575–594

    PubMed  Google Scholar 

  83. Rothwell JC, Gandevia SC, Burke D (1990) Activation of fusimotor neurones by motor cortical stimulation in human subjects. J Physiol 431:743–756

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Valls-Solé J, Pascual-Leone A, Brasil-Neto JP, Cammarota A, McShane L, Hallett M (1994) Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson’s disease. Neurology 44:735–741

    PubMed  Google Scholar 

  85. Cowan JM, Day BL, Marsden C, Rothwell JC (1986) The effect of percutaneous motor cortex stimulation on H reflexes in muscles of the arm and leg in intact man. J Physiol 377(1): 333–347

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Poon DE, Roy FD, Gorassini MA, Stein RB (2008) Interaction of paired cortical and peripheral nerve stimulation on human motor neurons. Exp Brain Res 188:13–21

    PubMed  Google Scholar 

  87. Valls-Solé J, Valldeoriola F (2002) Neurophysiological correlate of clinical signs in Parkinson’s disease. Clin Neurophysiol 113: 792–805

    PubMed  Google Scholar 

  88. Petersen N, Christensen LO, Nielsen J (1998) The effect of transcranial magnetic stimulation on the soleus H reflex during human walking. J Physiol 513:599–610

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Inghilleri M, Lorenzano C, Conte A, Frasca V, Manfredi M, Berardelli A (2003) Effects of transcranial magnetic stimulation on the H reflex and F wave in the hand muscles. Clin Neurophysiol 114:1096–1101

    CAS  PubMed  Google Scholar 

  90. Serranová T, Valls-Solé J, Muñoz E, Genís D, Jech R, Seeman P (2008) Abnormal corticospinal tract modulation of the soleus H reflex in patients with pure spastic paraparesis. Neurosci Lett 437:15–19

    PubMed  Google Scholar 

  91. Wolfe DL, Hayes KC, Potter PJ, Delaney GA (1996) Conditioning lower limb H-reflexes by transcranial magnetic stimulation of motor cortex reveals preserved innervation in SCI patients. J Neurotrauma 13:281–291

    CAS  PubMed  Google Scholar 

  92. Benito Penalva J, Opisso E, Medina J, Corrons M, Kumru H, Vidal J, Valls-Solé J (2010) H reflex modulation by transcranial magnetic stimulation in spinal cord injury subjects after gait training with electromechanical systems. Spinal Cord 48:400–406

    CAS  PubMed  Google Scholar 

  93. Mariorenzi R, Zarola F, Caramia MD, Paradiso C, Rossini PM (1991) Non-invasive evaluation of central motor tract excitability changes following peripheral nerve stimulation in healthy humans. Electroencephalogr Clin Neurophysiol 81:90–101

    CAS  PubMed  Google Scholar 

  94. Kasai T, Hayes KC, Wolfe DL, Allatt RD (1992) Afferent conditioning of motor evoked potentials following transcranial magnetic stimulation of motor cortex in normal subjects. Electroencephalogr Clin Neurophysiol 85: 95–101

    CAS  PubMed  Google Scholar 

  95. Kossev A, Siggelkow S, Schubert M, Wohlfarth K, Dengler R (1999) Muscle vibration:different effects on transcranial magnetic and electrical stimulation. Muscle Nerve 22:946–948

    CAS  PubMed  Google Scholar 

  96. Kofler M, Glocker FX, Leis AA, Seifert C, Wissel J, Kronenberg MF, Fuhr P (1998) Modulation of upper extremity motoneurone excitability following noxious finger tip stimulation in man: a study with transcranial magnetic stimulation. Neurosci Lett 246:97–100

    CAS  PubMed  Google Scholar 

  97. Valeriani M, Restuccia D, Di Lazzaro V, Oliviero A, Le Pera D, Profice P, Saturno E, Tonali P (2001) Inhibition of biceps brachii muscle motor area by painful heat stimulation of the skin. Exp Brain Res 139:168–172

    CAS  PubMed  Google Scholar 

  98. Ziemann U, Corwell B, Cohen LG (1998) Modulation of plasticity in human motor cortex after forearm ischemic nerve block. J Neurosci 18:1115–1123

    CAS  PubMed  Google Scholar 

  99. Cohen LG, Bandinelli S, Topka HR, Fuhr P, Roth BJ, Hallett M (1991) Topographic maps of human motor cortex in normal and pathological conditions: mirror movements, amputations and spinal cord injuries. Electroencephalogr Clin Neurophysiol Suppl 43: 36–50

    CAS  PubMed  Google Scholar 

  100. Kew JJ, Ridding MC, Rothwell JC, Passingham RE, Leigh PN, Sooriakumaran S, Frackowiak RS, Brooks DJ (1994) Reorganization of cortical blood flow and transcranial magnetic stimulation maps in human subjects after upper limb amputation. J Neurophysiol 72:2517–2524

    CAS  PubMed  Google Scholar 

  101. Ziemann U, Hallett M, Cohen LG (1998) Mechanisms of deafferentation-induced plasticity in human motor cortex. J Neurosci 18: 7000–7007

    CAS  PubMed  Google Scholar 

  102. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:572–584

    PubMed  Google Scholar 

  103. Classen J, Wolters A, Stefan K, Wycislo M, Sandbrink F, Schmidt A, Kunesch E (2004) Paired associative stimulation. Suppl Clin Neurophysiol 57:563–569

    PubMed  Google Scholar 

  104. Lourenço G, Meunier S, Vidailhet M, Simonetta-Moreau M (2007) Impaired modulation of motor cortex excitability by homonymous and heteronymous muscle afferents in focal hand dystonia. Mov Disord 22:523–527

    PubMed  Google Scholar 

  105. Tamburin S, Manganotti P, Marzi CA, Fiaschi A, Zanette G (2002) Abnormal somatotopic arrangement of sensorimotor interactions in dystonic patients. Brain 125:2719–2730

    PubMed  Google Scholar 

  106. Bagnato S, Agostino R, Modugno N, Quartarone A, Berardelli A (2006) Plasticity of the motor cortex in Parkinson’s disease patients on and off therapy. Mov Disord 21: 639–645

    PubMed  Google Scholar 

  107. Quartarone A, Rizzo V, Terranova C, Morgante F, Schneider S, Ibrahim N, Girlanda P, Bhatia KP, Rothwell JC (2009) Abnormal sensorimotor plasticity in organic but not in psychogenic dystonia. Brain 132:2871–2877

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Rapisarda G, Bastings E, de Noordhout AM et al (1996) Can motor recovery in stroke patients be predicted by early transcranial magnetic stimulation? Stroke 27:2191–2196

    CAS  PubMed  Google Scholar 

  109. Trompetto C, Assini A, Buccolieri A, Marchese R, Abbruzzese G (2000) Motor recovery following stroke: a transcranial magnetic stimulation study. Clin Neurophysiol 111:1860–1867

    CAS  PubMed  Google Scholar 

  110. Escudero JV, Sancho J, Bautista D, Escudero M, López-Trigo J (1998) Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke 29:1854–1859

    CAS  PubMed  Google Scholar 

  111. Di Lazzaro V, Oliviero A, Profice P, Saturno E, Pilato F, Tonali P (1999) Motor cortex excitability changes within 8 hours after ischaemic stroke may predict the functional outcome. Eur J Emerg Med 6:119–121

    PubMed  Google Scholar 

  112. Heald A, Bates D, Cartlidge NE et al (1993) Longitudinal study of central motor conduction time following stroke. 2. Central motor conduction measured within 72 h after stroke as a predictor of functional outcome at 12 months. Brain 116:1371–1385

    PubMed  Google Scholar 

  113. Turton A, Wroe S, Trepte N et al (1996) Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr Clin Neurophysiol 101:316–328

    CAS  PubMed  Google Scholar 

  114. Butler AJ, Wolf SL (2007) Putting the brain on the map: use of transcranial magnetic stimulation to assess and induce cortical plasticity of upper-extremity movement. Phys Ther 87: 719–736

    PubMed  Google Scholar 

  115. Alagona G, Delvaux V, Gérard P, De Pasqua V, Pennisi G, Delwaide PJ, Nicoletti F, Maertens de Noordhout A (2001) Ipsilateral motor responses to focal transcranial magnetic stimulation in healthy subjects and acute-stroke patients. Stroke 32:1304–1309

    CAS  PubMed  Google Scholar 

  116. Werhahn KJ, Conforto AB, Kadom N, Hallett M, Cohen LG (2003) Contribution of the ipsilateral motor cortex to recovery after chronic stroke. Ann Neurol 54:464–472

    PubMed  Google Scholar 

  117. Muellbacher W, Artner C, Mamoli B (1998) Motor evoked potentials in unilateral lingual paralysis after monohemispheric ischaemia. J Neurol Neurosurg Psychiatry 65:755–761

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Liepert J, Graef S, Uhde I et al (2000) Training induced changes of motor cortex representations in stroke patients. Acta Neurol Scand 101:321–326

    CAS  PubMed  Google Scholar 

  119. Taub E, Uswatte G, Pidikiti R (1999) Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation—a clinical review. J Rehabil Res Dev 36:237–251

    CAS  PubMed  Google Scholar 

  120. Ruohonen J, Karhu J (2010) Navigated transcranial magnetic stimulation. Neurophysiol Clin 40:7–17

    CAS  PubMed  Google Scholar 

  121. Benecke R, Meyer BU, Schönle P, Conrad B (1988) Transcranial magnetic stimulation of the human brain: responses in muscles supplied by cranial nerves. Exp Brain Res 71: 623–632

    CAS  PubMed  Google Scholar 

  122. Schmid UD, Moller AR, Schmid J (1991) Transcranial magnetic stimulation excites the labyrinthine segment of the facial nerve: an intraoperative electrophysiological study in man. Neurosci Lett 124:273–276

    CAS  PubMed  Google Scholar 

  123. Benecke R, Meyer BU (1991) Magnetic stimulation of corticonuclear systems and of cranial nerves in man: physiological basis and clinical application. Electroencephalogr Clin Neurophysiol Suppl 43:333–343

    CAS  PubMed  Google Scholar 

  124. Costa J, Valls-Sole J, Valldeoriola F, Rumia J, Tolosa E (2007) Motor responses of muscles supplied by cranial nerves to subthalamic nucleus deep brain stimuli. Brain 130: 245–255

    PubMed  Google Scholar 

  125. Paradiso GO, Cunic DI, Gunraj CA, Chen R (2005) Representation of facial muscles in human motor cortex. J Physiol 567:323–336

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Schriefer TN, Mills KR, Murray NM, Hess CW (1988) Evaluation of proximal facial nerve conduction by transcranial magnetic stimulation. J Neurol Neurosurg Psychiatry 51:60–66

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Rösler KM, Hess CW, Schmid UD (1989) Investigation of facial motor pathways by electrical and magnetic stimulation: sites and mechanisms of excitation. J Neurol Neurosurg Psychiatry 52:1149–1156

    PubMed Central  PubMed  Google Scholar 

  128. Schmid UD, Moller AR, Schmid J (1992) Transcranial magnetic stimulation of the facial nerve: intraoperative study on the effect of stimulus parameters on the excitation site in man. Muscle Nerve 15:829–836

    CAS  PubMed  Google Scholar 

  129. Glocker FX, Magistris MR, Rosler KM, Hess CW (1994) Magnetic transcranial and electrical stylomastoidal stimulation of the facial motor pathways in Bell’s palsy: time course and relevance of electrophysiological parameters. Electroencephalogr Clin Neurophysiol 93:113–120

    CAS  PubMed  Google Scholar 

  130. Curt A, Keck ME, Dietz V (1998) Functional outcome following spinal cord injury: significance of motor-evoked potentials and ASIA scores. Arch Phys Med Rehabil 79:81–86

    CAS  PubMed  Google Scholar 

  131. Macdonell RA, Donnan GA (1995) Magnetic cortical stimulation in acute spinal cord injury. Neurology 45:303–306

    CAS  PubMed  Google Scholar 

  132. Topka H, Cohen LG, Cole RA, Hallett M (1991) Reorganization of corticospinal pathways following spinal cord injury. Neurology 41:1276–1283

    CAS  PubMed  Google Scholar 

  133. Brouwer B, Hopkins-Rosseel DH (1997) Motor cortical mapping of proximal upper extremity muscles following spinal cord injury. Spinal Cord 35:205–212

    CAS  PubMed  Google Scholar 

  134. Saturno E, Bonato C, Miniussi C, Lazzaro V, Callea L (2008) Motor cortex changes in spinal cord injury: a TMS study. Neurol Res 30: 1084–1085

    PubMed  Google Scholar 

  135. Lo YL, Chan LL, Lim W, Tan SB, Tan CT, Chen JL, Fook-Chong S, Ratnagopal P (2004) Systematic correlation of transcranial magnetic stimulation and magnetic resonance imaging in cervical spondylotic myelopathy. Spine 29:1137–1145

    CAS  PubMed  Google Scholar 

  136. Chan KM, Nasathurai S, Chavin JM, Brown WF (1998) The usefulness of central motor conduction studies in the localization of cord involvement in cervical spondylytic myelopathy. Muscle Nerve 21:1220–1223

    CAS  PubMed  Google Scholar 

  137. Abbruzzese G, Dall’Agata D, Morena M, Simonetti S, Spadavecchia L, Severi P, Andrioli GC, Favale E (1988) Electrical stimulation of the motor tracts in cervical spondylosis. J Neurol Neurosurg Psychiatry 51:796–802

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Maertens de Noordhout A, Remacle JM, Pepin JL, Born JD, Delwaide PJ (1991) Magnetic stimulation of the motor cortex in cervical spondylosis. Neurology 41:75–80

    CAS  PubMed  Google Scholar 

  139. Jaskolski DJ, Laing RJ, Jarratt JA, Jukubowski J (1990) Pre- and postoperative motor conduction times, measured using magnetic stimulation, in patients with cervical spondylosis. Br J Neurosurg 4:187–192

    CAS  PubMed  Google Scholar 

  140. Hashimoto T, Uozumi T, Tsuji S (2000) Paraspinal motor evoked potentials by magnetic stimulation of the motor cortex. Neurology 55:885–888

    CAS  PubMed  Google Scholar 

  141. Ellaway PH, Catley M, Davey NJ, Kuppuswamy A, Strutton P, Frankel HL, Jamous A, Savic G (2007) Review of physiological motor outcome measures in spinal cord injury using transcranial magnetic stimulation and spinal reflexes. J Rehabil Res Dev 44:69–76

    PubMed  Google Scholar 

  142. Nardone R, Tezzon F (2003) Transcranial magnetic stimulation study in hereditary spastic paraparesis. Eur Neurol 49:234–237

    CAS  PubMed  Google Scholar 

  143. Schwenkreis P, Tegenthoff M, Witscher K, Börnke C, Przuntek H, Malin JP, Schöls L (2002) Motor cortex activation by transcranial magnetic stimulation in ataxia patients depends on the genetic defect. Brain 125: 301–309

    PubMed  Google Scholar 

  144. Young RE, Morgan OS, Forster A (1998) Motor pathway analysis in HAM/TSP using magnetic stimulation and F-waves. Can J Neurol Sci 25:48–54

    CAS  PubMed  Google Scholar 

  145. Shimizu H, Shiga Y, Fujihara K, Ohnuma A, Itoyama Y (2001) Clinical and physiological significance of abnormally prolonged central motor conduction time in HAM/TSP. J Neurol Sci 185:39–42

    CAS  PubMed  Google Scholar 

  146. Parisi L, Calandriello E, Terracciano M, Valente G, Amabile GA (1992) Analysis of central motor pathways with CCT study in HIV infections. Electroencephalogr Clin Neurophysiol 82:27–28

    Google Scholar 

  147. Nardone R, Buratti T, Oliviero A, Lochmann A, Tezzon F (2006) Corticospinal involvement in patients with a portosystemic shunt due to liver cirrhosis: a MEP study. J Neurol 253:81–85

    PubMed  Google Scholar 

  148. Caramia MD, Bernardi G, Zarola F, Rossini PM (1988) Neurophysiological evaluation of the central nervous impulse propagation in patients with sensorimotor disturbances. Electroencephalogr Clin Neurophysiol 70: 16–25

    CAS  PubMed  Google Scholar 

  149. Pineda AA, Ogata K, Osoegawa M, Murai H, Shigeto H, Yoshiura T, Tobimatsu S, Kira J (2007) A distinct subgroup of chronic inflammatory demyelinating polyneuropathy with CNS demyelination and a favorable response to immunotherapy. J Neurol Sci 255:1–6

    CAS  PubMed  Google Scholar 

  150. Eisen A (2004) Clinical neurophysiology of motor neuron diseases. In: Daube JR, Mauguière F (eds) Handbook of clinical neurophysiology, vol 4. Elsevier, Amsterdam

    Google Scholar 

  151. Urban PP, Wicht S, Hopf HC (2001) Sensitivity of transcranial magnetic stimulation of cortico-bulbar vs. cortico-spinal tract involvement in Amyotrophic Lateral Sclerosis (ALS). J Neurol 248:850–855

    CAS  PubMed  Google Scholar 

  152. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    CAS  PubMed  Google Scholar 

  153. Weber M, Eisen A, Stewart HG, Andersen PM (2000) Preserved slow conducting corticomotoneuronal projections in amyotrophic lateral sclerosis with autosomal recessive D90A CuZn-superoxide dismutase mutation. Brain 123:1505–1515

    PubMed  Google Scholar 

  154. Mills KR (2003) The natural history of central motor abnormalities in amyotrophic lateral sclerosis. Brain 126:2558–2566

    CAS  PubMed  Google Scholar 

  155. Caramia MD, Cicinelli P, Paradiso C, Mariorenzi R, Zarola F, Bernardi G, Rossini PM (1991) Excitability changes of muscular responses to magnetic brain stimulation in patients with central motor disorders. Electroencephalogr Clin Neurophysiol 81:243–250

    CAS  PubMed  Google Scholar 

  156. Yokota T, Yoshino A, Inaba A, Saito Y (1996) Double cortical stimulation in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 61:596–600

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Zanette G, Tamburin S, Manganotti P, Refatti N, Forgione A, Rizzuto N (2002) Changes in motor cortex inhibition over time in patients with amyotrophic lateral sclerosis. J Neurol 249:1723–1728

    PubMed  Google Scholar 

  158. Humm AM, Z’Graggen WJ, Bühler R, Magistris MR, Rösler KM (2006) Quantification of central motor conduction deficits in multiple sclerosis patients before and after treatment of acute exacerbation by methylprednisolone. J Neurol Neurosurg Psychiatry 77:345–350

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Ravnborg M, Christiansen P, Larsson H, Sorensen PS (1992) The diagnostic reliability of magnetically evoked motor potentials in multiple-sclerosis. Neurology 42:1296–1301

    CAS  PubMed  Google Scholar 

  160. Mayr N, Baumgartner C, Zeitlhofer J, Deecke L (1991) The sensitivity of transcranial cortical magnetic stimulation in detecting pyramidal tract lesions in clinically definite multiple sclerosis. Neurology 41:566–569

    CAS  PubMed  Google Scholar 

  161. Humm AM, Magistris MR, Truffert A, Hess CW, Rosler KM (2003) Central motor conduction differs between acute relapsing-remitting and chronic progressive multiple sclerosis. Clin Neurophysiol 114:2196–2203

    CAS  PubMed  Google Scholar 

  162. Caramia MD, Palmieri MG, Desiato MT, Boffa L, Galizia P, Rossini PM, Centonze D, Bernardi G (2004) Brain excitability changes in the relapsing and remitting phases of multiple sclerosis: a study with transcranial magnetic stimulation. Clin Neurophysiol 115:956–965

    PubMed  Google Scholar 

  163. Humm AM, Z’Graggen WJ, von Hornstein NE, Magistris MR, Rosler KM (2004) Assessment of central motor conduction to intrinsic hand muscles using the triple stimulation technique: normal values and repeatability. Clin Neurophysiol 115:2558–2566

    CAS  PubMed  Google Scholar 

  164. Schmierer K, Irlbacher K, Grosse P, Röricht S, Meyer BU (2002) Correlates of disability in multiple sclerosis detected by transcranial magnetic stimulation. Neurology 59:1218–1224

    CAS  PubMed  Google Scholar 

  165. Bednarik J, Kadanka Z (1992) Multimodal sensory and motor evoked-potentials in a 2-year follow-up-study of MS patients with relapsing course. Acta Neurol Scand 86: 15–18

    CAS  PubMed  Google Scholar 

  166. Leocani L, Rovaris M, Boneschi FM, Medaglini S, Rossi P, Martinelli V, Amadio S, Comi G (2006) Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study. J Neurol Neurosurg Psychiatry 77:1030–1035

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Feuillet L, Pelletier J, Suchet L, Rico A, Ali Cherif A, Pouget J, Attarian S (2007) Prospective clinical and electrophysiological follow-up on a multiple sclerosis population treated with interferon beta-1 a: a pilot study. Mult Scler 13:348–356

    CAS  PubMed  Google Scholar 

  168. Comi G, Rovaris M, Leocani L, Martinelli V, Filippi M (2001) Clinical and MRI assessment of brain damage in MS. Neurol Sci 22(Suppl 2):S123–S127

    PubMed  Google Scholar 

  169. Kale N, Agaoglu J, Onder G, Tanik O (2009) Correlation between disability and transcranial magnetic stimulation abnormalities in patients with multiple sclerosis. J Clin Neurosci 16: 1439–1442

    CAS  PubMed  Google Scholar 

  170. Conte A, Lenzi D, Frasca V, Gilio F, Giacomelli E, Gabriele M, Bettolo CM, Iacovelli E, Pantano P, Pozzilli C, Inghilleri M (2009) Intracortical excitability in patients with relapsing-remitting and secondary progressive multiple sclerosis. J Neurol 256:933–938

    CAS  PubMed  Google Scholar 

  171. Perretti A, Balbi P, Orefice G, Trojano L, Marcantonio L, Brescia-Morra V, Ascione S, Manganelli F, Conte G, Santoro L (2004) Post-exercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation: a study in multiple sclerosis. Clin Neurophysiol 115:2128–2133

    CAS  PubMed  Google Scholar 

  172. Ozturk A, Smith SA, Gordon-Lipkin EM, Harrison DM, Shiee N, Pham DL, Caffo BS, Calabresi PA, Reich DS (2010) MRI of the corpus callosum in multiple sclerosis: association with disability. Mult Scler 16:166–177

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Yaldizli O, Atefy R, Gass A, Sturm D, Glassl S, Tettenborn B, Putzki N (2010) Corpus callosum index and long-term disability in multiple sclerosis patients. J Neurol 257:1256–1264

    PubMed  Google Scholar 

  174. Boroojerdi B, Diefenbach K, Ferbert A (1996) Transcallosal inhibition in cortical and subcortical cerebral vascular lesions. J Neurol Sci 144:160–170

    CAS  PubMed  Google Scholar 

  175. Hoppner J, Kunesch E, Buchmann J, Hess A, Grossmann A, Benecke R (1999) Demyelination and axonal degeneration in corpus callosum assessed by analysis of transcallosally mediated inhibition in multiple sclerosis. Clin Neurophysiol 110:748–756

    CAS  PubMed  Google Scholar 

  176. Jung P, Beyerle A, Humpich M, Neumann-Haefelin T, Lanfermann H, Ziemann U (2006) Ipsilateral silent period: a marker of callosal conduction abnormality in early relapsing-remitting multiple sclerosis? J Neurol Sci 250:133–139

    PubMed  Google Scholar 

  177. Bonzano L, Tacchino A, Roccatagliata L, Mancardi GL, Abbruzzese G, Bove M (2011) Structural integrity of callosal midbody influences intermanual transfer in a motor reaction-time task. Hum Brain Mapp 32(2): 218–228

    PubMed  Google Scholar 

  178. Currà A, Modugno N, Inghilleri M, Manfredi M, Hallett M, Berardelli A (2002) Transcranial magnetic stimulation techniques in clinical investigation. Neurology 59:1851–1859

    PubMed  Google Scholar 

  179. Kühn AA, Grosse P, Holtz K, Brown P, Meyer BU, Kupsch A (2004) Patterns of abnormal motor cortex excitability in atypical parkinsonian syndromes. Clin Neurophysiol 115: 1786–1795

    PubMed  Google Scholar 

  180. Valls-Solé J (2007) Neurophysiology of motor control and movement disorders. In: Jankovic J, Tolosa E (eds) Parkinson’s disease and movement disorders. Lippincott Williams and Wilkins, Philadelphia, pp 7–22

    Google Scholar 

  181. Valls-Solé J (2005) Role of electrophysiology in diagnosis and research in atypical parkinsonian disorders. In: Litvan I (ed) Atypical parkinsonian disorders, Clinical and research aspects. Humana Press, New Jersey, pp 409–429

    Google Scholar 

  182. Cruz Martínez A, Arpa J, Alonso M, Palomo F, Villoslada C (1995) Transcranial magnetic stimulation in multiple system and late onset cerebellar atrophies. Acta Neurol Scand 92: 218–224

    PubMed  Google Scholar 

  183. Abbruzzese G, Marchese R, Trompetto C (1997) Sensory and motor evoked potentials in multiple system atrophy: a comparative study with Parkinson’s disease. Mov Disord 12:315–321

    CAS  PubMed  Google Scholar 

  184. De Rosa A, Volpe G, Marcantonio L, Santoro L, Brice A, Filla A, Perretti A, De Michele G (2006) Neurophysiological evidence of corticospinal tract abnormality in patients with Parkin mutations. J Neurol 253:275–279

    PubMed  Google Scholar 

  185. Mascia MM, Valls-Sole J, Marti MJ, Salazar G (2005) Sensorimotor integration in patients with parkinsonian type multisystem atrophy. J Neurol 252:473–481

    CAS  PubMed  Google Scholar 

  186. Wolters A, Classen J, Kunesch E, Grossmann A, Benecke R (2004) Measurements of transcallosally mediated cortical inhibition for differentiating parkinsonian syndromes. Mov Disord 19:518–528

    PubMed  Google Scholar 

  187. Filipovic SR, Ljubisavljevic M, Svetel M, Milanovic S, Kacar A, Kostic VS (1997) Impairment of cortical inhibition in writer’s cramp as revealed by changes in electromyographic silent period after transcranial magnetic stimulation. Neurosci Lett 222: 167–170

    CAS  PubMed  Google Scholar 

  188. Butefisch CM, Boroojerdi B, Chen R, Battaglia F, Hallett M (2005) Task-dependent intracortical inhibition is impaired in focal hand dystonia. Mov Disord 20:545–551

    PubMed Central  PubMed  Google Scholar 

  189. Espay AJ, Morgante F, Purzner J, Gunraj CA, Lang AE, Chen R (2006) Cortical and spinal abnormalities in psychogenic dystonia. Ann Neurol 59:825–834

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Valls-Sole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Valls-Sole, J. (2014). Transcranial Magnetic Stimulation (TMS) Clinical Applications: Diagnostics. In: Rotenberg, A., Horvath, J., Pascual-Leone, A. (eds) Transcranial Magnetic Stimulation. Neuromethods, vol 89. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0879-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0879-0_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0878-3

  • Online ISBN: 978-1-4939-0879-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics