Skip to main content

Electroencephalography During Transcranial Magnetic Stimulation: Current Modus Operandi

  • Protocol
  • First Online:
Transcranial Magnetic Stimulation

Part of the book series: Neuromethods ((NM,volume 89))

Abstract

Transcranial magnetic stimulation (TMS) is a widely used research and clinical device that has the potential to modulate and interact with brain activity. However, its mechanisms of action, whether used to explore brain functions in healthy participants or to induce meaningful therapeutic effects in patients, are still not fully understood. One method allowing bridging the gap between TMS administration and its behavioral consequences is the simultaneous recording of brain activity with electroencephalography (EEG). Unfortunately, the acquisition and interpretation of EEG data during TMS is still not straightforward because of the contamination of the EEG by artifacts, despite the introduction of several TMS-compatible EEG systems. This chapter is providing a step-by-step guide to online TMS-EEG experimentation, from the selection of appropriate material, to conducting the experiment and later data analysis. We first review the multiple possible sources of EEG contaminations related to a TMS discharge (of electromagnetic, mechanical, and physiological origin). We then examine various methods that have been proposed in the literature to minimize these artifacts or isolate them from genuine neuronal responses to TMS. We finally survey insights in cognitive and clinical neurosciences that have been gained from the TMS-EEG combination between its introduction in 1997 (first TMS-compatible EEG systems) up to 2011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1(8437):1106–1107

    CAS  PubMed  Google Scholar 

  2. Walsh V, Cowey A (2000) Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 1(1):73–79

    CAS  PubMed  Google Scholar 

  3. Hummel FC, Cohen LG (2006) Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5(8):708–712

    PubMed  Google Scholar 

  4. Ridding MC, Rothwell JC (2007) Is there a future for therapeutic use of transcranial magnetic stimulation? Nat Rev Neurosci 8(7):559–567

    CAS  PubMed  Google Scholar 

  5. Fregni F, Pascual-Leone A (2007) Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 3(7):383–393

    PubMed  Google Scholar 

  6. Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA et al (2008) Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul 1(4):326–336

    PubMed  Google Scholar 

  7. Sack AT, Linden DE (2003) Combining transcranial magnetic stimulation and functional imaging in cognitive brain research: possibilities and limitations. Brain Res Brain Res Rev 43(1):41–56

    PubMed  Google Scholar 

  8. Sack AT (2006) Transcranial magnetic stimulation, causal structure-function mapping and networks of functional relevance. Curr Opin Neurobiol 16(5):593–599

    CAS  PubMed  Google Scholar 

  9. Bestmann S, Ruff CC, Blankenburg F, Weiskopf N, Driver J, Rothwell JC (2008) Mapping causal interregional influences with concurrent TMS-fMRI. Exp Brain Res 191(4):383–402

    PubMed  Google Scholar 

  10. Driver J, Blankenburg F, Bestmann S, Vanduffel W, Ruff CC (2009) Concurrent brain-stimulation and neuroimaging for studies of cognition. Trends Cogn Sci 13(7):319–327

    PubMed  Google Scholar 

  11. Ruff CC, Driver J, Bestmann S (2009) Combining TMS and fMRI: from ‘virtual lesions’ to functional-network accounts of cognition. Cortex 45(9):1043–1049

    PubMed Central  PubMed  Google Scholar 

  12. Silvanto J, Pascual-Leone A (2008) State-dependency of transcranial magnetic stimulation. Brain Topogr 21(1):1–10

    PubMed Central  PubMed  Google Scholar 

  13. Cracco RQ, Amassian VE, Maccabee PJ, Cracco JB (1989) Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation. Electroencephalogr Clin Neurophysiol 74(6):417–424

    CAS  PubMed  Google Scholar 

  14. Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Naatanen R et al (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8(16):3537–3540

    CAS  PubMed  Google Scholar 

  15. Siebner HR, Bergmann TO, Bestmann S, Massimini M, Johansen-Berg H, Mochizuki H et al (2009) Consensus paper: combining transcranial stimulation with neuroimaging. Brain Stimul 2(2):58–80

    PubMed  Google Scholar 

  16. Ives JR, Rotenberg A, Poma R, Thut G, Pascual-Leone A (2006) Electroencepha-lographic recording during transcranial magnetic stimulation in humans and animals. Clin Neurophysiol 117(8):1870–1875

    PubMed  Google Scholar 

  17. Veniero D, Bortoletto M, Miniussi C (2009) TMS-EEG co-registration: on TMS-induced artifact. Clin Neurophysiol 120(7):1392–1399

    PubMed  Google Scholar 

  18. Julkunen P, Paakkonen A, Hukkanen T, Kononen M, Tiihonen P, Vanhatalo S et al (2008) Efficient reduction of stimulus artefact in TMS-EEG by epithelial short-circuiting by mini-punctures. Clin Neurophysiol 119(2):475–481

    CAS  PubMed  Google Scholar 

  19. Litvak V, Komssi S, Scherg M, Hoechstetter K, Classen J, Zaaroor M et al (2007) Artifact correction and source analysis of early electroencephalographic responses evoked by transcranial magnetic stimulation over primary motor cortex. Neuroimage 37(1):56–70

    PubMed  Google Scholar 

  20. Thut G, Ives JR, Kampmann F, Pastor MA, Pascual-Leone A (2005) A new device and protocol for combining TMS and online recordings of EEG and evoked potentials. J Neurosci Methods 141(2):207–217

    PubMed  Google Scholar 

  21. Ilmoniemi RJ, Kicic D (2010) Methodology for combined TMS and EEG. Brain Topogr 22(4):233–248

    PubMed Central  PubMed  Google Scholar 

  22. Ilmoniemi RJ, Karhu J (2008) TMS and electroencephalography: methods and current advances. In: Wasserman EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) Oxford handbook of transcranial stimulation. Oxford University Press, Oxford, pp 593–608

    Google Scholar 

  23. Hamidi M, Slagter HA, Tononi G, Postle BR (2010) Brain responses evoked by high-frequency repetitive TMS: an ERP study. Brain Stimul 3(1):2–17

    PubMed Central  PubMed  Google Scholar 

  24. Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J (2011) Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol 21(14):1176–1185

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Garcia JO, Grossman ED, Srinivasan R (2011) Evoked potentials in large-scale cortical networks elicited by TMS of the visual cortex. J Neurophysiol 106(4):1734–1746

    PubMed Central  PubMed  Google Scholar 

  26. Paus T, Sipila PK, Strafella AP (2001) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86(4):1983–1990

    CAS  PubMed  Google Scholar 

  27. Virtanen J, Ruohonen J, Naatanen R, Ilmoniemi RJ (1999) Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation. Med Biol Eng Comput 37(3):322–326

    CAS  PubMed  Google Scholar 

  28. Bender S, Basseler K, Sebastian I, Resch F, Kammer T, Oelkers-Ax R et al (2005) Electroencephalographic response to transcranial magnetic stimulation in children: Evidence for giant inhibitory potentials. Ann Neurol 58(1):58–67

    PubMed  Google Scholar 

  29. Morbidi F, Garulli A, Prattichizzo D, Rizzo C, Manganotti P, Rossi S (2007) Off-line removal of TMS-induced artifacts on human electroencephalography by Kalman filter. J Neurosci Methods 162(1–2):293–302

    PubMed  Google Scholar 

  30. Thut G, Northoff G, Ives JR, Kamitani Y, Pfennig A, Kampmann F et al (2003) Effects of single-pulse transcranial magnetic stimulation (TMS) on functional brain activity: a combined event-related TMS and evoked potential study. Clin Neurophysiol 114(11):2071–2080

    CAS  PubMed  Google Scholar 

  31. Levit-Binnun N, Litvak V, Pratt H, Moses E, Zaroor M, Peled A (2010) Differences in TMS-evoked responses between schizophrenia patients and healthy controls can be observed without a dedicated EEG system. Clin Neurophysiol 121(3):332–339

    PubMed  Google Scholar 

  32. Roth BJ, Pascual-Leone A, Cohen LG, Hallett M (1992) The heating of metal electrodes during rapid-rate magnetic stimulation: a possible safety hazard. Electroencephalogr Clin Neurophysiol 85(2):116–123

    CAS  PubMed  Google Scholar 

  33. Ives JR, Keenan JP, Schomer DL, Pascual-Leone A (1998) EEG recording during repetitive transcranial magnetic stimulation (rTMS). Neurology Suppl 4(50):A167

    Google Scholar 

  34. Tiitinen H, Virtanen J, Ilmoniemi RJ, Kamppuri J, Ollikainen M, Ruohonen J et al (1999) Separation of contamination caused by coil clicks from responses elicited by transcranial magnetic stimulation. Clin Neurophysiol 110(5):982–985

    CAS  PubMed  Google Scholar 

  35. Kahkonen S, Kesaniemi M, Nikouline VV, Karhu J, Ollikainen M, Holi M et al (2001) Ethanol modulates cortical activity: direct evidence with combined TMS and EEG. Neuroimage 14(2):322–328

    CAS  PubMed  Google Scholar 

  36. Kahkonen S, Komssi S, Wilenius J, Ilmoniemi RJ (2005) Prefrontal TMS produces smaller EEG responses than motor-cortex TMS: implications for rTMS treatment in depression. Psychopharmacology (Berl) 181(1):16–20

    Google Scholar 

  37. Komssi S, Kahkonen S, Ilmoniemi RJ (2004) The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation. Hum Brain Mapp 21(3):154–164

    PubMed  Google Scholar 

  38. Massimini M, Ferrarelli F, Esser SK, Riedner BA, Huber R, Murphy M et al (2007) Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci U S A 104(20):8496–8501

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Esser SK, Huber R, Massimini M, Peterson MJ, Ferrarelli F, Tononi G (2006) A direct demonstration of cortical LTP in humans: a combined TMS/EEG study. Brain Res Bull 69(1):86–94

    CAS  PubMed  Google Scholar 

  40. Iramina K, Maeno T (2003) Measurement of evoked electroencephalography induced by transcranial magnetic stimulation. J Appl Phys 93(10):6718–6720

    CAS  Google Scholar 

  41. Epstein CM (1995) A simple artifact-rejection preamplifier for clinical neurophysiology. Am J EEG Technol 35:64–71

    Google Scholar 

  42. Bonato C, Miniussi C, Rossini PM (2006) Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study. Clin Neurophysiol 117(8):1699–1707

    CAS  PubMed  Google Scholar 

  43. Fuggetta G, Pavone EF, Walsh V, Kiss M, Eimer M (2006) Cortico-cortical interactions in spatial attention: a combined ERP/TMS study. J Neurophysiol 95(5):3277–3280

    PubMed Central  PubMed  Google Scholar 

  44. Fitzgerald PB, Maller JJ, Hoy K, Farzan F, Daskalakis ZJ (2009) GABA and cortical inhibition in motor and non-motor regions using combined TMS-EEG: a time analysis. Clin Neurophysiol 120(9):1706–1710

    CAS  PubMed  Google Scholar 

  45. Taylor PC, Walsh V, Eimer M (2010) The neural signature of phosphene perception. Hum Brain Mapp 31(9):1408–1417

    PubMed Central  PubMed  Google Scholar 

  46. Fuggetta G, Fiaschi A, Manganotti P (2005) Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study. Neuroimage 27(4):896–908

    PubMed  Google Scholar 

  47. Brignani D, Manganotti P, Rossini PM, Miniussi C (2008) Modulation of cortical oscillatory activity during transcranial magnetic stimulation. Hum Brain Mapp 29(5):603–612

    PubMed  Google Scholar 

  48. Sekiguchi H, Takeuchi S, Kadota H, Kohno Y, Nakajima Y (2011) TMS-induced artifacts on EEG can be reduced by rearrangement of the electrode’s lead wire before recording. Clin Neurophysiol 122(5):984–90

    PubMed  Google Scholar 

  49. Nikouline V, Ruohonen J, Ilmoniemi RJ (1999) The role of the coil click in TMS assessed with simultaneous EEG. Clin Neurophysiol 110(8):1325–1328

    CAS  PubMed  Google Scholar 

  50. Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science 309(5744):2228–2232

    CAS  PubMed  Google Scholar 

  51. Ferrarelli F, Massimini M, Peterson MJ, Riedner BA, Lazar M, Murphy MJ et al (2008) Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: a TMS/EEG study. Am J Psychiatry 165(8):996–1005

    PubMed  Google Scholar 

  52. Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M (2009) Natural frequencies of human corticothalamic circuits. J Neurosci 29(24):7679–7685

    CAS  PubMed  Google Scholar 

  53. Huber R, Maatta S, Esser SK, Sarasso S, Ferrarelli F, Watson A et al (2008) Measures of cortical plasticity after transcranial paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep. J Neurosci 28(31):7911–7918

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Miniussi C, Thut G (2010) Combining TMS and EEG offers new prospects in cognitive neuroscience. Brain Topogr 22(4):249–256

    PubMed  Google Scholar 

  55. Fuggetta G, Pavone EF, Fiaschi A, Manganotti P (2008) Acute modulation of cortical oscillatory activities during short trains of high-frequency repetitive transcranial magnetic stimulation of the human motor cortex: a combined EEG and TMS study. Hum Brain Mapp 29(1):1–13

    PubMed  Google Scholar 

  56. Thielscher A, Opitz A, Windhoff M (2011) Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. Neuroimage 54(1):234–243

    PubMed  Google Scholar 

  57. Komssi S, Aronen HJ, Huttunen J, Kesaniemi M, Soinne L, Nikouline VV et al (2002) Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation. Clin Neurophysiol 113(2):175–184

    PubMed  Google Scholar 

  58. Reichenbach A, Whittingstall K, Thielscher A (2011) Effects of transcranial magnetic stimulation on visual evoked potentials in a visual suppression task. Neuroimage 54(2):1375–1384

    CAS  PubMed  Google Scholar 

  59. Van Der Werf YD, Paus T (2006) The neural response to transcranial magnetic stimulation of the human motor cortex. I. Intracortical and cortico-cortical contributions. Exp Brain Res 175(2):231–245

    Google Scholar 

  60. Nikulin VV, Kicic D, Kahkonen S, Ilmoniemi RJ (2003) Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement. Eur J Neurosci 18(5):1206–1212

    PubMed  Google Scholar 

  61. Berg P, Scherg M (1994) A multiple source approach to the correction of eye artifacts. Electroencephalogr Clin Neurophysiol 90(3):229–241

    CAS  PubMed  Google Scholar 

  62. Scherg M, Ille N, Bornfleth H, Berg P (2002) Advanced tools for digital EEG review: virtual source montages, whole-head mapping, correlation, and phase analysis. J Clin Neurophysiol 19(2):91–112

    PubMed  Google Scholar 

  63. Taylor PC, Walsh V, Eimer M (2008) Combining TMS and EEG to study cognitive function and cortico-cortico interactions. Behav Brain Res 191(2):141–147

    PubMed Central  PubMed  Google Scholar 

  64. Komssi S, Kahkonen S (2006) The novelty value of the combined use of electroencephalography and transcranial magnetic stimulation for neuroscience research. Brain Res Rev 52(1):183–192

    PubMed  Google Scholar 

  65. Thut G, Miniussi C (2009) New insights into rhythmic brain activity from TMS-EEG studies. Trends Cogn Sci 13(4):182–189

    PubMed  Google Scholar 

  66. Fitzgerald PB (2010) TMS-EEG: a technique that has come of age? Clin Neurophysiol 121(3):265–267

    PubMed  Google Scholar 

  67. Daskalakis ZJ, Farzan F, Barr MS, Maller JJ, Chen R, Fitzgerald PB (2008) Long-interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS-EEG study. Neuropsychopharmacology 33(12):2860–2869

    PubMed  Google Scholar 

  68. Claus D, Weis M, Jahnke U, Plewe A, Brunholzl C (1992) Corticospinal conduction studied with magnetic double stimulation in the intact human. J Neurol Sci 111(2):180–188

    CAS  PubMed  Google Scholar 

  69. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A et al (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Ziemann U (1999) Intracortical inhibition and facilitation in the conventional paired TMS paradigm. Electroencephalogr Clin Neurophysiol Suppl 51:127–136

    CAS  PubMed  Google Scholar 

  71. Iwahashi M, Arimatsu T, Ueno S, Iramina K (2008) Differences in evoked EEG by transcranial magnetic stimulation at various stimulus points on the head. Conf Proc IEEE Eng Med Biol Soc 2008:2570–2573

    CAS  PubMed  Google Scholar 

  72. Massimini M, Tononi G, Huber R (2009) Slow waves, synaptic plasticity and information processing: insights from transcranial magnetic stimulation and high-density EEG experiments. Eur J Neurosci 29(9):1761–1770

    CAS  PubMed  Google Scholar 

  73. Zanon M, Busan P, Monti F, Pizzolato G, Battaglini PP (2010) Cortical connections between dorsal and ventral visual streams in humans: evidence by TMS/EEG co-registration. Brain Topogr 22(4):307–317

    PubMed  Google Scholar 

  74. Capotosto P, Babiloni C, Romani GL, Corbetta M (2009) Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. J Neurosci 29(18):5863–5872

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Taylor PC, Nobre AC, Rushworth MF (2007) FEF TMS affects visual cortical activity. Cereb Cortex 17(2):391–399

    PubMed  Google Scholar 

  76. Bonnard M, Spieser L, Meziane HB, de Graaf JB, Pailhous J (2009) Prior intention can locally tune inhibitory processes in the primary motor cortex: direct evidence from combined TMS-EEG. Eur J Neurosci 30(5):913–923

    CAS  PubMed  Google Scholar 

  77. Spieser L, Meziane HB, Bonnard M (2010) Cortical mechanisms underlying stretch reflex adaptation to intention: a combined EEG-TMS study. Neuroimage 52(1):316–325

    CAS  PubMed  Google Scholar 

  78. Taylor PC, Nobre AC, Rushworth MF (2007) Subsecond changes in top down control exerted by human medial frontal cortex during conflict and action selection: a combined transcranial magnetic stimulation electroencephalography study. J Neurosci 27(42):11343–11353

    CAS  PubMed  Google Scholar 

  79. Van Der Werf YD, Sadikot AF, Strafella AP, Paus T (2006) The neural response to transcranial magnetic stimulation of the human motor cortex. II. Thalamocortical contributions. Exp Brain Res 175(2):246–255

    Google Scholar 

  80. Thut G, Schyns PG, Gross J (2011) Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Front Psychol 2:170

    PubMed Central  PubMed  Google Scholar 

  81. Klimesch W, Sauseng P, Gerloff C (2003) Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. Eur J Neurosci 17(5):1129–1133

    PubMed  Google Scholar 

  82. Romei V, Gross J, Thut G (2010) On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? J Neurosci 30(25):8692–8697

    CAS  PubMed  Google Scholar 

  83. Romei V, Driver J, Schyns PG, Thut G (2011) Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Curr Biol 21(4):334–337

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Sauseng P, Klimesch W, Heise KF, Gruber WR, Holz E, Karim AA et al (2009) Brain oscillatory substrates of visual short-term memory capacity. Curr Biol 19(21):1846–1852

    CAS  PubMed  Google Scholar 

  85. Veniero D, Brignani D, Thut G, Miniussi C (2011) Alpha-generation as basic response-signature to transcranial magnetic stimulation (TMS) targeting the human resting motor cortex: a TMS/EEG co-registration study. Psychophysiology 48(10):1381–1389

    Google Scholar 

  86. Thut G, Pascual-Leone A (2010) A review of combined TMS-EEG studies to characterize lasting effects of repetitive TMS and assess their usefulness in cognitive and clinical neuroscience. Brain Topogr 22(4):219–232

    PubMed Central  PubMed  Google Scholar 

  87. Maki H, Ilmoniemi RJ (2010) The relationship between peripheral and early cortical activation induced by transcranial magnetic stimulation. Neurosci Lett 478(1):24–28

    PubMed  Google Scholar 

  88. Romei V, Brodbeck V, Michel C, Amedi A, Pascual-Leone A, Thut G (2008) Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb Cortex 18(9):2010–2018

    PubMed Central  PubMed  Google Scholar 

  89. Romei V, Rihs T, Brodbeck V, Thut G (2008) Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability. Neuroreport 19(2):203–208

    PubMed  Google Scholar 

  90. Zarkowski P, Shin CJ, Dang T, Russo J, Avery D (2006) EEG and the variance of motor evoked potential amplitude. Clin EEG Neurosci 37(3):247–251

    CAS  PubMed  Google Scholar 

  91. Lepage JF, Saint-Amour D, Theoret H (2008) EEG and neuronavigated single-pulse TMS in the study of the observation/execution matching system: are both techniques measuring the same process? J Neurosci Methods 175(1):17–24

    PubMed  Google Scholar 

  92. Sauseng P, Klimesch W, Gerloff C, Hummel FC (2009) Spontaneous locally restricted EEG alpha activity determines cortical excitability in the motor cortex. Neuropsychologia 47(1):284–288

    CAS  PubMed  Google Scholar 

  93. Maki H, Ilmoniemi RJ (2010) EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations. Clin Neurophysiol 121(4):492–501

    PubMed  Google Scholar 

  94. Dugué L, Marque P, Vanrullen R (2011) The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. J Neurosci 31(33):11889–11893

    PubMed  Google Scholar 

  95. Plewnia C, Rilk AJ, Soekadar SR, Arfeller C, Huber HS, Sauseng P et al (2008) Enhancement of long-range EEG coherence by synchronous bifocal transcranial magnetic stimulation. Eur J Neurosci 27(6):1577–1583

    PubMed  Google Scholar 

  96. Kahkonen S, Wilenius J, Nikulin VV, Ollikainen M, Ilmoniemi RJ (2003) Alcohol reduces prefrontal cortical excitability in humans: a combined TMS and EEG study. Neuropsychopharmacology 28(4):747–754

    PubMed  Google Scholar 

  97. Farzan F, Barr MS, Levinson AJ, Chen R, Wong W, Fitzgerald PB et al (2010) Evidence for gamma inhibition deficits in the dorsolateral prefrontal cortex of patients with schizophrenia. Brain 133(Pt 5):1505–1514

    PubMed  Google Scholar 

  98. Julkunen P, Jauhiainen AM, Westeren-Punnonen S, Pirinen E, Soininen H, Kononen M et al (2008) Navigated TMS combined with EEG in mild cognitive impairment and Alzheimer’s disease: a pilot study. J Neurosci Methods 172(2):270–276

    PubMed  Google Scholar 

  99. Valentin A, Arunachalam R, Mesquita-Rodrigues A, Garcia Seoane JJ, Richardson MP, Mills KR et al (2008) Late EEG responses triggered by transcranial magnetic stimulation (TMS) in the evaluation of focal epilepsy. Epilepsia 49(3):470–480

    PubMed  Google Scholar 

  100. Brodbeck V, Thut G, Spinelli L, Romei V, Tyrand R, Michel CM et al (2010) Effects of repetitive transcranial magnetic stimulation on spike pattern and topography in patients with focal epilepsy. Brain Topogr 22(4):267–280

    PubMed  Google Scholar 

  101. Rotenberg A (2010) Prospects for clinical applications of transcranial magnetic stimulation and real-time EEG in epilepsy. Brain Topogr 22(4):257–266

    PubMed  Google Scholar 

  102. Price GW, Lee JW, Garvey CA, Gibson N (2010) The use of background EEG activity to determine stimulus timing as a means of improving rTMS efficacy in the treatment of depression: a controlled comparison with standard techniques. Brain Stimul 3(3):140–152

    PubMed  Google Scholar 

  103. Price GW (2004) EEG-dependent ERP recording: using TMS to increase the incidence of a selected pre-stimulus pattern. Brain Res Brain Res Protoc 12(3):144–151

    PubMed  Google Scholar 

  104. Reithler J, Peters JC, Sack AT (2011) Multimodal transcranial magnetic stimulation: using concurrent neuroimaging to reveal the neural network dynamics of noninvasive brain stimulation. Prog Neurobiol 94(2):149–165

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marine Vernet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vernet, M., Thut, G. (2014). Electroencephalography During Transcranial Magnetic Stimulation: Current Modus Operandi. In: Rotenberg, A., Horvath, J., Pascual-Leone, A. (eds) Transcranial Magnetic Stimulation. Neuromethods, vol 89. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0879-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0879-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0878-3

  • Online ISBN: 978-1-4939-0879-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics