Skip to main content

Control of Oncogenic miRNA Function by Light-Activated miRNA Antagomirs

  • Protocol
  • First Online:
Cancer Cell Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1165))

Abstract

MicroRNAs (miRNAs) are single stranded noncoding RNAs of approximately 22 nucleotides that act as posttranscriptional gene regulators by binding partially complementary sequences in the 3′ untranslated region (3′-UTR) of target messenger RNAs (mRNAs). MicroRNAs regulate many biological processes including embryonal development, differentiation, apoptosis, and proliferation and the targets of miRNAs range from signalling proteins and transcription factors to RNA binding proteins. Recently, variations in the expression of certain miRNAs have been linked to a variety of human diseases including cancer and viral infections, validating miRNAs as potential targets for drug discovery. Several tools have been developed to control the function of individual miRNAs and have been applied to study their biological role and therapeutic potential; however, common methods lack a precise level of control that allows for the study of miRNA function with high spatial and temporal resolution. Toward this goal, a light-activated miRNA antagomir for mature miR-21 was developed through the site-specific installation of caging groups on the bases of selected nucleotides. Installation of caged nucleotides led to complete inhibition of the antagomir–miRNA hybridization and inactivation of antagomir function. The miRNA-inhibitory activity of the caged antagomirs was fully restored upon decaging through a brief UV irradiation. The synthesized antagomir was applied to the photochemical regulation of miR-21 function in mammalian cells. Moreover, spatial and temporal control over antagomir activity and thus miR-21 function was obtained in mammalian cells. The presented approach enables the precise regulation of miRNA function with unprecedented spatial and temporal resolution using UV irradiation and can be readily extended to any miRNA of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carthew R (2006) Gene regulation by microRNAs. Curr Opin Genet Dev 16:203–208

    Article  CAS  PubMed  Google Scholar 

  2. Djuranovic S, Nahvi A, Green R (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336:237–240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Pillai RS (2005) MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11: 1753–1761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  5. Appasani K (2008) MicroRNAs: from basic science to disease biology. Cambridge University Press, Cambridge

    Google Scholar 

  6. Janga SC, Vallabhaneni S (2011) MicroRNAs as post-transcriptional machines and their interplay with cellular networks. Adv Exp Med Biol 722:59–74

    Article  CAS  PubMed  Google Scholar 

  7. Tong AW, Nemunaitis J (2008) Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther 15:341–355

    Article  CAS  PubMed  Google Scholar 

  8. Sevignani C, Calin G, Siracusa L, Croce C (2006) Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17:189–202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Port JD, Sucharov C (2010) Role of microRNAs in cardiovascular disease: therapeutic challenges and potentials. J Cardiovasc Pharmacol 56:444–453

    Article  CAS  PubMed  Google Scholar 

  10. Lindsay MA (2008) microRNAs and the immune response. Trends Immunol 29:343–351

    Article  CAS  PubMed  Google Scholar 

  11. Cullen BR (2011) Viruses and microRNAs: RISCy interactions with serious consequences. Genes Dev 25:1881–1894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Esquela-Kerscher A, Slack F (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  PubMed  Google Scholar 

  13. Esau C (2008) Inhibition of microRNA with antisense oligonucleotides. Methods 44: 55–60

    Article  CAS  PubMed  Google Scholar 

  14. Veedu R, Wengel J (2010) Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem Biodiver 7:536–542

    Article  CAS  Google Scholar 

  15. Brown B, Naldini L (2009) Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 10:578–585

    Article  CAS  PubMed  Google Scholar 

  16. Deiters A (2010) Small molecule modifiers of the microRNA and RNA interference pathway. AAPS J 12:51–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Meister G, Landthaler M, Dorsett Y, Tuschl T (2004) Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10:544–550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Krützfeldt J, Rajewsky N, Braich R, Rajeev K, Tuschl T, Manoharan M et al (2005) Silencing of microRNAs in vivo with 'antagomirs'. Nature 438:685–689

    Article  PubMed  Google Scholar 

  19. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    Article  CAS  PubMed  Google Scholar 

  20. Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Gumireddy K, Young D, Xiong X, Hogenesch J, Huang Q, Deiters A (2008) Small-molecule inhibitors of microrna miR-21 function. Angew Chem Int Ed Engl 47:7482–7484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Young D, Connelly C, Grohmann C, Deiters A (2010) Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc 132:7976–7981

    Article  CAS  PubMed  Google Scholar 

  23. Liu Z, Sall A, Yang D (2008) MicroRNA: an emerging therapeutic target and intervention tool. Int J Mol Sci 9:978–999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Grünweller A, Hartmann R (2007) Locked nucleic acid oligonucleotides: the next generation of antisense agents? BioDrugs 21:235–243

    Article  PubMed  Google Scholar 

  25. Riggsbee CW, Deiters A (2010) Recent advances in the photochemical control of protein function. Trends Biotechnol 28:468–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Deiters A (2010) Principles and applications of the photochemical control of cellular processes. Chembiochem 11:47–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Deiters A (2009) Light activation as a method of regulating and studying gene expression. Curr Opin Chem Biol 13:678–686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Young DD, Deiters A (2007) Photochemical control of biological processes. Org Biomol Chem 5:999–1005

    Article  CAS  PubMed  Google Scholar 

  29. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    Article  CAS  PubMed  Google Scholar 

  30. Prokup A, Hemphill J, Deiters A (2012) DNA computation: a photochemically controlled AND gate. J Am Chem Soc 134:3810–3815

    Article  CAS  PubMed  Google Scholar 

  31. Govan JM, Lively MO, Deiters A (2011) Photochemical control of DNA decoy function enables precise regulation of nuclear factor κB activity. J Am Chem Soc 133:13176–13182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Young D, Lively M, Deiters A (2010) Activation and deactivation of DNAzyme and antisense function with light for the photochemical regulation of gene expression in mammalian cells. J Am Chem Soc 132:6183–6193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Young DD, Lusic H, Lively MO, Yoder JA, Deiters A (2008) Gene silencing in mammalian cells with light-activated antisense agents. Chembiochem 9:2937–2940

    Article  CAS  PubMed  Google Scholar 

  34. Young DD, Edwards WF, Lusic H, Lively MO, Deiters A (2008) Light-triggered polymerase chain reaction. Chem Commun (Camb) 462–4

    Google Scholar 

  35. Joshi KB, Vlachos A, Mikat V, Deller T, Heckel A (2012) Light-activatable molecular beacons with a caged loop sequence. Chem Commun (Camb) 48:2746–2748

    Article  CAS  Google Scholar 

  36. Mikat V, Heckel A (2007) Light-dependent RNA interference with nucleobase-caged siRNAs. RNA 13:2341–2347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467:86–90

    Article  CAS  PubMed  Google Scholar 

  38. Connelly CM, Uprety R, Hemphill J, Deiters A (2012) Spatiotemporal control of microRNA function using light-activated antagomirs. Mol Biosyst 8:2987–2993

    Article  CAS  PubMed  Google Scholar 

  39. Furusawa K, Ueno K, Katsura T (1990) Synthesis and restricted conformation of 3′,5′-O-(di-tert-butylsilanediyl) ribonucleosides. Chem Lett 97–100

    Google Scholar 

  40. Lusic H, Deiters A (2006) A new photocaging group for aromatic N-heterocycles. Synth Stutt 2147–50

    Google Scholar 

  41. Iyer R, Egan W, Regan J, Beaucage S (1990) 3H-1,2-benzodithiole-3-one 1,1-dioxide as an improved sulfurizing reagent in the solid-phase synthesis of oligodeoxyribonucleoside phosphorothioates. J Am Chem Soc 112:1253–1254

    Article  CAS  Google Scholar 

  42. Govan JM, Uprety R, Hemphill J, Lively MO, Deiters A (2012) Regulation of transcription through light-activation and light-deactivation of triplex-forming oligonucleotides in mammalian cells. ACS Chem Biol 7:1247–1256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lusic H, Lively MO, Deiters A (2008) Light-activated deoxyguanosine: photochemical regulation of peroxidase activity. Mol Biosyst 4:508–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Akiyama T, Nishimoto H, Ozaki S (1990) The selective protection of uridine with a para-methoxybenzyl-chloride- a synthesis of 2′-O-methyluridine. Bull Chem Soc Jpn 63:3356–3357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Connelly, C.M., Deiters, A. (2014). Control of Oncogenic miRNA Function by Light-Activated miRNA Antagomirs. In: Robles-Flores, M. (eds) Cancer Cell Signaling. Methods in Molecular Biology, vol 1165. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0856-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0856-1_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0855-4

  • Online ISBN: 978-1-4939-0856-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics