Advertisement

DNA Methylation Analysis of Steroid Hormone Receptor Genes

  • Ignacio Camacho-ArroyoEmail author
  • Valeria Hansberg-Pastor
  • Mauricio Rodríguez-Dorantes
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1165)

Abstract

Steroid hormone receptors (SHR) are important transcription factors for regulating different physiological and pathological processes. Their altered expression has been strongly associated to cancer progression. Epigenetic marks such as DNA methylation have been proposed as one of the regulatory mechanisms for SHR expression in cancer. DNA methylation occurs at CpG dinucleotides, which form clusters known as CpG islands. These islands are mostly observed at promoter regions of housekeeping genes, and their aberrant methylation in cancer cells is associated with silencing of tumor-suppressor gene expression. SHR genes are characterized for presenting alternative promoters with different CpG island content, which are prone to be methylated. The method of choice for studying DNA methylation is bisulfite sequencing, since it provides information about the methylation pattern at single-nucleotide level. The method is based on the deamination of cytosine residues to uracil after treatment with sodium bisulfite. The converted DNA is amplified by a polymerase chain reaction, cloned, and sequenced. Here, we describe a protocol for bisulfite sequencing suitable for analyzing different CpG regions in SHR genes.

Key words

Epigenetic DNA methylation Bisulfite sequencing Steroid hormone receptor CpG islands 

References

  1. 1.
    Griekspoor A, Zwart W, Neefjes J et al (2007) Visualizing the action of steroid hormone receptors in living cells. Nucl Recept Signal 5:1–9CrossRefGoogle Scholar
  2. 2.
    Ahmad N, Kumar R (2011) Steroid hormone receptors in cancer development: a target for cancer therapeutics. Cancer Lett 300:1–9PubMedCrossRefGoogle Scholar
  3. 3.
    Green CD, Han JD (2011) Epigenetic regulation by nuclear receptors. Epigenomics 3:59–72PubMedCrossRefGoogle Scholar
  4. 4.
    Mani SK, Mermelstein PG, Tetel MJ et al (2012) Convergence of multiple mechanisms of steroid hormone action. Horm Metab Res 44:569–576PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19:698–711PubMedCrossRefGoogle Scholar
  6. 6.
    Korlach J, Turner SW (2012) Going beyond five bases in DNA sequencing. Curr Opin Struct Biol 22:251–261PubMedCrossRefGoogle Scholar
  7. 7.
    Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057–1068PubMedCrossRefGoogle Scholar
  8. 8.
    Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Sandoval J, Esteller M (2012) Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 22:50–55PubMedCrossRefGoogle Scholar
  10. 10.
    Chatterjee R, Vinson C (2012) CpG methylation recruits sequence specific transcription factors essential for tissue specific gene expression. Biochim Biophys Acta 1819:763–770PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Doi A, Park IH, Wen B et al (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41:1350–1353PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Nagae G, Isagawa T, Shiraki N et al (2011) Tissue-specific demethylation in CpG-poor promoters during cellular differentiation. Hum Mol Genet 20:2710–2721PubMedCrossRefGoogle Scholar
  13. 13.
    Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Brait M, Sidransky D (2011) Cancer epigenetics: above and beyond. Toxicol Mech Methods 21:275–288PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Hayatsu H (2008) Discovery of bisulfite-mediated cytosine conversion to uracil, the key reaction for DNA methylation analysis—a personal account. Proc Jpn Acad Ser B Phys Biol Sci 84:321–330PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Pappas JJ, Toulouse A, Bradley WE (2009) A modified protocol for bisulfite genomic sequencing of difficult samples. Biol Proced Online 11:99–112PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Zhang Y, Rohde C, Tierling S et al (2009) DNA methylation analysis by bisulfite conversion, cloning, and sequencing of individual clones. Methods Mol Biol 507:177–187PubMedCrossRefGoogle Scholar
  18. 18.
    Hansberg-Pastor V, Gonzalez-Arenas A, Pena-Ortiz MA et al (2013) The role of DNA methylation and histone acetylation in the regulation of progesterone receptor isoforms expression in human astrocytoma cell lines. Steroids 78:500–507PubMedCrossRefGoogle Scholar
  19. 19.
    Sasaki M, Kaneuchi M, Fujimoto S et al (2003) Hypermethylation can selectively silence multiple promoters of steroid receptors in cancers. Mol Cell Endocrinol 202:201–207PubMedCrossRefGoogle Scholar
  20. 20.
    Turner JD, Pelascini LP, Macedo JA et al (2008) Highly individual methylation patterns of alternative glucocorticoid receptor promoters suggest individualized epigenetic regulatory mechanisms. Nucleic Acids Res 36:7207–7218PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Breslin MB, Geng CD, Vedeckis WV (2001) Multiple promoters exist in the human GR gene, one of which is activated by glucocorticoids. Mol Endocrinol 15:1381–1395PubMedCrossRefGoogle Scholar
  22. 22.
    Takai D, Jones PA (2003) The CpG island searcher: a new WWW resource. In Silico Biol 3:235–240PubMedGoogle Scholar
  23. 23.
    Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431PubMedCrossRefGoogle Scholar
  24. 24.
    Lefever S, Hoebeeck J, Pattyn F et al (2010) methGraph: a genome visualization tool for PCR-based methylation assays. Epigenetics 5:159–163PubMedCrossRefGoogle Scholar
  25. 25.
    Bonin S, Hlubek F, Benhattar J et al (2010) Multicentre validation study of nucleic acids extraction from FFPE tissues. Virchows Arch 457:309–317PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Bonin S, Stanta G (2013) Nucleic acid extraction methods from fixed and paraffin-embedded tissues in cancer diagnostics. Expert Rev Mol Diagn 13:271–282PubMedCrossRefGoogle Scholar
  27. 27.
    Darst RP, Pardo CE, Ai L et al (2010) Bisulfite sequencing of DNA. Curr Protoc Mol Biol Chapter 7, Unit 7 9:1–17.Google Scholar
  28. 28.
    Bock C, Reither S, Mikeska T et al (2005) BiQ analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 21:4067–4068PubMedCrossRefGoogle Scholar
  29. 29.
    Rohde C, Zhang Y, Reinhardt R et al (2010) BISMA-fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences. BMC Bioinformatics 11:230. doi: 10.1186/1471-2105-11-230 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Boyd VL, Zon G (2004) Bisulfite conversion of genomic DNA for methylation analysis: protocol simplification with higher recovery applicable to limited samples and increased throughput. Anal Biochem 326:278–280PubMedCrossRefGoogle Scholar
  31. 31.
    Dallol A, Al-Ali W, Al-Shaibani A et al (2011) Analysis of DNA methylation in FFPE tissues using the MethyLight technology. Methods Mol Biol 724:191–204PubMedCrossRefGoogle Scholar
  32. 32.
    Pedersen IS, Krarup HB, Thorlacius-Ussing O et al (2012) High recovery of cell-free methylated DNA based on a rapid bisulfite-treatment protocol. BMC Mol Biol 13:12. doi: 10.1186/1471-2199-13-12 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Ralser M, Querfurth R, Warnatz HJ et al (2006) An efficient and economic enhancer mix for PCR. Biochem Biophys Res Commun 347:747–751PubMedCrossRefGoogle Scholar
  34. 34.
    Alba FJ, Bermudez A, Daban JR (2001) Green-light transilluminator for the detection without photodamage of proteins and DNA labeled with different fluorescent dyes. Electrophoresis 22:399–403PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ignacio Camacho-Arroyo
    • 1
    Email author
  • Valeria Hansberg-Pastor
    • 1
  • Mauricio Rodríguez-Dorantes
    • 2
  1. 1.Departamento de Biología, Facultad de QuímicaUniversidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad UniversitariaCoyoacán, MéxicoMéxico
  2. 2.Instituto Nacional de Medicina Genómica, Periférico Sur, Álvaro ObregónMéxicoMéxico

Personalised recommendations