Gene Disruption Using Zinc Finger Nuclease Technology

  • Sara Granja
  • Ibtissam Marchiq
  • Fátima BaltazarEmail author
  • Jacques Pouysségur
Part of the Methods in Molecular Biology book series (MIMB, volume 1165)


Zinc finger nucleases are reagents that induce DNA double-strand breaks at specific sites that can be repaired by nonhomologous end joining, inducing alterations in the genome. This strategy has enabled highly efficient gene disruption in numerous cell types and model organisms opening a door for new therapeutic applications. Here, we describe the disruption of CD147/basigin by this technique in a human cancer cell line.

Key words

DNA double-strand breaks Gene targeting Knockout Zinc finger nuclease 


  1. 1.
    Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646PubMedCrossRefGoogle Scholar
  2. 2.
    Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Casci T (2011) Keeping ZFNs on target. Nat Rev Genet 12:667Google Scholar
  4. 4.
    Foley JE, Yeh J-RJ, Maeder ML et al (2009) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PloS ONE 4:e4348PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Mashimo T, Takizawa A, Voigt B et al (2010) Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS ONE 5:e8870PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Carbery ID, Ji D, Harrington A et al (2010) Targeted genome modification in mice using zinc-finger nucleases. Genetics 186:451–459PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Ochiai H, Fujita K, Suzuki K-I et al (2010) Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases. Genes Cells 15:875–885PubMedGoogle Scholar
  8. 8.
    Young JJ, Cherone JM, Doyon Y et al (2011) Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A 108:7052–7057PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Beumer KJ, Trautman JK, Bozas A et al (2008) Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci U S A 105:19821–19826PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Hicks DG, Longoria G, Pettay J et al (2004) In situ hybridization in the pathology laboratory: general principles, automation, and emerging research applications for tissue-based studies of gene expression. J Mol Histol 35:595–601PubMedGoogle Scholar
  11. 11.
    Morton J, Davis MW, Jorgensen EM et al (2006) Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci U S A 103:16370–16375PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Floch L, Chiche J, Marchiq I et al (2012) CD147 subunit of lactate/H + symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc Natl Acad Sci U S A 109:20166Google Scholar
  13. 13.
    QIAGEN: sample and assay technologies. Accessed 23 Oct 2013

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sara Granja
    • 1
    • 2
  • Ibtissam Marchiq
    • 3
  • Fátima Baltazar
    • 1
    • 2
    Email author
  • Jacques Pouysségur
    • 3
  1. 1.Surgical Sciences DomainLife and Health Sciences Research Institute (ICVS), School of Health Sciences, University of MinhoBragaPortugal
  2. 2.ICVS/3B’s-PT Government Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.Institute for Research on Cancer and Aging, University of Nice, CNRS, InsermNiceFrance

Personalised recommendations