An In Vivo Model to Study the Effects of Tumoral Soluble Factors on the Vascular Permeability in Mice

  • César Alejandro Guzmán-PérezEmail author
  • Alfredo Ibarra-Sánchez
  • José Luis Ventura-Gallegos
  • Claudia González-Espinosa
  • Jonathan García-Román
  • Alejandro Zentella-Dehesa
Part of the Methods in Molecular Biology book series (MIMB, volume 1165)


Some cancer cell lines release soluble factors that activate the endothelial cells in vitro; also endothelial activation in vivo includes an increased expression of adhesion molecules on the apical membrane, and an increased permeability, which may contribute to the extravasation process of circulating cells. We have adapted the Miles assay into a protocol that uses IgE/antigen complex and VEGF-1 as controls. The Miles assay comprises the intradermic injection of a pro-inflammatory agent into the skin and the intravenous introduction of a dye; the increase in vascular permeability will allow for the extravasation of the dye and thus the skin will be stained. The dye is then extracted from the dissected skin and quantified by spectrophotometry. The use of localized treatments will allow for testing a larger number of experimental samples in the same animal. With this model, the effects of tumoral soluble factors (TSFs) on endothelial permeability can be studied, as well as the signaling pathways involved. It can also serve to study the interactions between endothelial, immune, and cancer cells during the extravasation process.

Key words

Cancer Endothelium Vascular permeability Metastasis Extravasation Tumoral soluble factors 



César Alejandro Guzmán Pérez received a master’s scholarship from the Mexican National Council for Science and Technology (CONACyT, Grant 245198). The authors thank M. Sc. Layla Ortiz and Dr. Melissa Boyd for their assistance in translating the manuscript.


  1. 1.
    Criscuoli ML, Nguyen M, Eliceiri BP (2005) Tumor metastasis but not tumor growth is dependent on Src-mediated vascular permeability. Blood 105:1508–1514PubMedCrossRefGoogle Scholar
  2. 2.
    Eum SY, Lee YW, Hennig B et al (2004) VEGF regulates PCB 104-mediated stimulation of permeability and transmigration of breast cancer cells in human microvascular endothelial cells. Exp Cell Res 296:231–244PubMedCrossRefGoogle Scholar
  3. 3.
    García-Román J, Zentella-Dehesa A (2013) Vascular permeability changes involved in tumor metastasis. Cancer Lett 335(2):259–269. doi: 10.1016/j.canlet.2013.03.005
  4. 4.
    Aghajanian A, Wittchen ES, Allingham MJ et al (2008) Endothelial cell junctions and the regulation of vascular permeability and leukocyte transmigration. J Thromb Haemost 6:1453–1460PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Nguyen DX, Bos PD, Massagué J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284PubMedCrossRefGoogle Scholar
  6. 6.
    Perelmuter VM, Manskikh VN (2012) Preniche as missing link of the metastatic niche concept explaining organ-preferential metastasis of malignant tumors and the type of metastatic disease. Biochemistry (Mosc) 77:111–118CrossRefGoogle Scholar
  7. 7.
    Estrada-Bernal A, Alcántara-Meléndez MA, Mendoza-Milla C et al (2003) NF-kappaB dependent activation of human endothelial cells treated with soluble products derived from human lymphomas. Cancer Lett 191:239–248PubMedCrossRefGoogle Scholar
  8. 8.
    Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127:679–695PubMedCrossRefGoogle Scholar
  9. 9.
    Garcia AN, Vogel SM, Komarova YA et al (2011) Permeability of endothelial barrier: cell culture and in vivo models. Methods Mol Biol 763:333–354PubMedCrossRefGoogle Scholar
  10. 10.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Calorini L, Bianchini F (2010) Environmental control of invasiveness and metastatic dissemination of tumor cells: the role of tumor cell-host cell interactions. Cell Commun Signal 2010, 8:24. doi: 10.1186/1478-811X-8-24
  13. 13.
    Weis SM (2011) Evaluation of VEGF-induced vascular permeability in mice. Methods Mol Biol 763:403–415PubMedCrossRefGoogle Scholar
  14. 14.
    Miles AA, Miles EM (1952) Vascular reactions to histamine, histamine-liberator and leukotaxine in the skin of guinea-pigs. J Physiol 118:228–257PubMedCentralPubMedGoogle Scholar
  15. 15.
    Teshima R, Akiyama H, Akasaka R et al (1998) Simple spectrophotometric analysis of passive and active ear cutaneous anaphylaxis in the mouse. Toxicol Lett 95:109–115PubMedCrossRefGoogle Scholar
  16. 16.
    Mamluk R, Klagsbrun M, Detmar M et al (2005) Soluble neuropilin targeted to the skin inhibits vascular permeability. Angiogenesis 8:217–227PubMedCrossRefGoogle Scholar
  17. 17.
    Galli SJ, Kalesnikoff J, Grimbaldeston MA et al (2010) Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • César Alejandro Guzmán-Pérez
    • 1
    • 2
    Email author
  • Alfredo Ibarra-Sánchez
    • 3
  • José Luis Ventura-Gallegos
    • 1
    • 2
  • Claudia González-Espinosa
    • 3
  • Jonathan García-Román
    • 2
  • Alejandro Zentella-Dehesa
    • 1
    • 2
  1. 1.Departamento de Medicina Genómica y Toxicología AmbientalInstituto de Investigaciones Biomédicas, UNAMMéxicoMéxico
  2. 2.Unidad de BioquímicaInstituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” SSAMéxicoMéxico
  3. 3.Departamento de FarmacobiologíaCentro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur.MéxicoMéxico

Personalised recommendations