Skip to main content

Use of Biguanides to Improve Response to Chemotherapy

  • Protocol
  • First Online:
Cancer Cell Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1165))

Abstract

Metformin is a commonly utilized antidiabetic agent, which has been associated with improved clinical outcomes in cancer patients. The precise mechanism of action remains unclear, but preclinical evidence suggests that metformin can sensitize tumor cells to the effects to conventional chemotherapeutic agents and ionizing radiation (IR). In this chapter we discuss the general background of an approach to evaluate the effects of metformin on conventional chemotherapeutic agent toxicity in a preclinical model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunn CJ, Peters DH (1995) Metformin. A review of its pharmacological properties and therapeutic use in non-insulin-dependent diabetes mellitus. Drugs 49:721–749

    Article  CAS  PubMed  Google Scholar 

  2. Scheen AJ, Paquot N (2013) Metformin revisited: a critical review of the benefit-risk balance in at-risk patients with type 2 diabetes. Diabetes Metab 39:179–190

    Article  CAS  PubMed  Google Scholar 

  3. Salpeter S, Greyber E, Pasternak G, Salpeter E (2006) Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 1, CD002967

    PubMed  Google Scholar 

  4. Skinner HD, McCurdy MR, Echeverria AE et al (2013) Metformin use and improved response to therapy in esophageal adenocarcinoma. Acta Oncol 52:1002–1009

    Article  CAS  PubMed  Google Scholar 

  5. Skinner HD, Sandulache VC, Ow TJ et al (2012) TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin Cancer Res 18:290–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Jiralerspong S, Palla SL, Giordano SH et al (2009) Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 27:3297–3302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Noto H, Goto A, Tsujimoto T, Noda M (2012) Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis. PLoS One 7:e33411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Lee MS, Hsu CC, Wahlqvist ML, Tsai HN, Chang YH, Huang YC (2011) Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. BMC Cancer 11:20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bosetti C, Rosato V, Polesel J et al (2012) Diabetes mellitus and cancer risk in a network of case-control studies. Nutr Cancer 64:643–651

    Article  PubMed  Google Scholar 

  10. Sandulache VC, Skinner HD, Ow TJ et al (2012) Individualizing antimetabolic treatment strategies for head and neck squamous cell carcinoma based on TP53 mutational status. Cancer 118:711–721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gallagher EJ, LeRoith D (2011) Diabetes, cancer, and metformin: connections of metabolism and cell proliferation. Ann N Y Acad Sci 1243:54–68

    Article  CAS  PubMed  Google Scholar 

  12. Rocha GZ, Dias MM, Ropelle ER et al (2011) Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res 17:3993–4005

    Article  CAS  PubMed  Google Scholar 

  13. Ben Sahra I, Laurent K, Giuliano S et al (2010) Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 70:2465–2475

    Article  CAS  PubMed  Google Scholar 

  14. Erices R, Bravo ML, Gonzalez P et al (2013) Metformin, at concentrations corresponding to the treatment of diabetes, potentiates the cytotoxic effects of carboplatin in cultures of ovarian cancer cells. Reprod Sci 20(1433):1446

    Google Scholar 

  15. Smith MA, Houghton P (2013) A proposal regarding reporting of in vitro testing results. Clin Cancer Res 19:2828–2833

    Article  CAS  PubMed  Google Scholar 

  16. Bardin C, Nobecourt E, Larger E, Chast F, Treluyer JM, Urien S (2012) Population pharmacokinetics of metformin in obese and non-obese patients with type 2 diabetes mellitus. Eur J Clin Pharmacol 68:961–968

    Article  CAS  PubMed  Google Scholar 

  17. Charles B, Norris R, Xiao X, Hague W (2006) Population pharmacokinetics of metformin in late pregnancy. Ther Drug Monit 28:67–72

    Article  CAS  PubMed  Google Scholar 

  18. Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y (2003) Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol Pharmacol 63:844–848

    Article  CAS  PubMed  Google Scholar 

  19. Davidoff F (1968) Effects of guanidine derivatives on mitochondrial function. II. Reversal of guanidine-derivative inhibiton by free fatty acids. J Clin Invest 47:2344–2358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Davidoff F (1968) Effects of guanidine derivatives on mitochondrial function. I. Phenethylbiguanide inhibition of respiration in mitochondria from guinea pig and rat tissues. J Clin Invest 47:2331–2343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Davidoff F (1971) Effects of guanidine derivatives on mitochondrial function. 3. The mechanism of phenethylbiguanide accumulation and its relationship to in vitro respiratory inhibition. J Biol Chem 246:4017–4027

    CAS  PubMed  Google Scholar 

  22. Zhang L, He H, Balschi JA (2007) Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration. Am J Physiol Heart Circ Physiol 293:H457–H466

    Article  CAS  PubMed  Google Scholar 

  23. Ota S, Horigome K, Ishii T et al (2009) Metformin suppresses glucose-6-phosphatase expression by a complex I inhibition and AMPK activation-independent mechanism. Biochem Biophys Res Commun 388:311–316

    Article  CAS  PubMed  Google Scholar 

  24. Guigas B, Detaille D, Chauvin C et al (2004) Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochem J 382:877–884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Batandier C, Guigas B, Detaille D et al (2006) The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. J Bioenerg Biomembr 38:33–42

    Article  CAS  PubMed  Google Scholar 

  26. Beeson CC, Beeson GC, Schnellmann RG (2010) A high-throughput respirometric assay for mitochondrial biogenesis and toxicity. Anal Biochem 404:75–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ouslimani N, Peynet J, Bonnefont-Rousselot D, Therond P, Legrand A, Beaudeux JL (2005) Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metabolism 54:829–834

    Article  CAS  PubMed  Google Scholar 

  28. Piwkowska A, Rogacka D, Jankowski M, Dominiczak MH, Stepinski JK, Angielski S (2010) Metformin induces suppression of NAD(P)H oxidase activity in podocytes. Biochem Biophys Res Commun 39:268–273

    Article  Google Scholar 

  29. Eruslanov E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 594:57–72

    Article  CAS  PubMed  Google Scholar 

  30. Storozhuk Y, Hopmans SN, Sanli T et al (2013) Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br J Cancer 108:2021–2032

    Article  CAS  PubMed  Google Scholar 

  31. An D, Kewalramani G, Chan JK et al (2006) Metformin influences cardiomyocyte cell death by pathways that are dependent and independent of caspase-3. Diabetologia 49:2174–2184

    Article  CAS  PubMed  Google Scholar 

  32. Silva FM, da Silva MH, Bracht A, Eller GJ, Constantin RP, Yamamoto NS (2010) Effects of metformin on glucose metabolism of perfused rat livers. Mol Cell Biochem 340:283–289

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heath D. Skinner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sandulache, V.C., Yang, L., Skinner, H.D. (2014). Use of Biguanides to Improve Response to Chemotherapy. In: Robles-Flores, M. (eds) Cancer Cell Signaling. Methods in Molecular Biology, vol 1165. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0856-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0856-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0855-4

  • Online ISBN: 978-1-4939-0856-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics