Skip to main content

Statistical Perspectives for Genome-Wide Association Studies (GWAS)

  • Protocol
  • First Online:
Clinical Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1168))

  • 4755 Accesses

Abstract

In this chapter we consider some key elements in conducting a successful genome-wide association study or GWAS. The first step is to design the study well (Subheading 3.1), paying particular attention to case and control selection and achieving adequate sample size to deal with the large burden of multiple testing. Second, we focus on the crucial step of applying stringent quality control (Subheading 3.2) to genotyping results. The most crucial potential confounding factor in GWAS is population stratification, and we describe methods for accounting for this in study design and analysis (Subheading 3.3). The primary association analysis is relatively straightforward, and we describe the main approaches to this, including evaluation of results (Subheading 3.4). More comprehensive coverage of the genome can be achieved by using an external reference panel to estimate genotypes at untyped variants using imputation (Subheading 3.5), which we consider in some detail. We finish with some observations on following up a GWAS (Subheading 3.6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GWAS:

Genome-wide association study

HWE:

Hardy–Weinberg equilibrium

LD:

Linkage disequilibrium

PCA:

Principal component analysis

QC:

Quality control

SNP:

Single-nucleotide polymorphism

References

  1. Hindorff LA, MacArthur J, Morales J et al (2013) A catalog of published genome-wide association studies. www.genome.gov/GWASstudies. Accessed 11 Apr 2014

  2. Antoniou AC, Easton DF (2003) Polygenic inheritance of breast cancer: implications for design of association studies. Genet Epidemiol 25:190–202

    Article  PubMed  Google Scholar 

  3. Xiao R, Boehnke M (2009) Quantifying and correcting for the winner’s curse in genetic association studies. Genet Epidemiol 33:453–462

    Article  PubMed Central  PubMed  Google Scholar 

  4. Astle W, Balding DJ (2009) Population structure and cryptic relatedness in genetic association studies. Stat Sci 24:451–471

    Article  Google Scholar 

  5. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    Article  CAS  PubMed  Google Scholar 

  6. Devlin B, Roeder K (2001) Genomic control: a new approach to genetic-based association studies. Theor Popul Biol 60:155–166

    Article  CAS  PubMed  Google Scholar 

  7. Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  8. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  9. Novembre J, Stephens M (2008) Interpreting principal component analyses of spatial population genetic variation. Nat Genet 40:646–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Novembre J, Johnson T, Bryc K et al (2008) Genes mirror geography within Europe. Nature 456:98–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bishop DT, Demenais F, Iles MM et al (2009) Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet 41:920–925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kang HM, Sul JH, Service SK et al (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Zhang Z, Ersoz E, Lai CQ et al (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Mathieson I, McVean G (2012) Differential confounding of rare and common variants in spatially structured populations. Nat Genet 44:243–246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Iles MM (2010) The impact of incomplete linkage disequilibrium and genetic model choice on the analysis and interpretation of genome-wide association studies. Ann Hum Genet 74:375–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Marchini J, Howie B, Myers S et al (2007) A new multipoint method for genome-wide association studies via imputation of genotypes. Nat Genet 39:906–913

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Willer CJ, Ding J et al (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34:816–834

    Article  PubMed Central  PubMed  Google Scholar 

  18. Browning SR (2008) Missing data imputation and haplotype phase inference for genome-wide association studies. Hum Genet 124:439–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Wallace C, Chapman JM, Clayton DG (2006) Improved power offered by a score test for linkage disequilibrium mapping of quantitative-trait loci by selective genotyping. Am J Hum Genet 78:498–504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Iles MM, Law MH, Stacey SN et al (2013) A variant in FTO shows association with melanoma risk not due to BMI. Nat Genet 45:428–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Pruim RJ, Welch RP, Sanna S et al (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26:2336–2337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer H. Barrett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Barrett, J.H., Taylor, J.C., Iles, M.M. (2014). Statistical Perspectives for Genome-Wide Association Studies (GWAS). In: Trent, R. (eds) Clinical Bioinformatics. Methods in Molecular Biology, vol 1168. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0847-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0847-9_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0846-2

  • Online ISBN: 978-1-4939-0847-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics