Skip to main content

Infrared Thermal Analysis of Plant Freezing Processes

  • Protocol
  • First Online:
Plant Cold Acclimation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1166))

Abstract

Infrared thermal analysis is an invaluable technique to study the plant freezing process. In the differential mode infrared thermal analysis allows to localize ice nucleation and ice propagation in whole plants or plant samples at the tissue level. Ice barriers can be visualized, and supercooling of cells, tissues, and organs can be monitored. Places where ice masses are accommodated in the apoplast can be identified. Here, we describe an experimental setting developed in the laboratory in Innsbruck, give detailed information on the practical procedure and preconditions, and give additionally an idea of the problems that can be encountered and how they by special precautions may be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wisniewski ME, Gusta LV, Fuller MP, Karlson D (2009) Ice nucleation, propagation and deep supercooling: the lost tribes of freezing studies. In: Gusta LV, Wisniewski ME, Tanino KK (eds) Plant cold hardiness: from the laboratory to the field. CAB International, Cambridge, pp 1–11

    Chapter  Google Scholar 

  2. Gusta LV, Wisniewski ME, Trischuk RG (2009) Patterns of freezing in plants: the influence of species, environment and experimental procedures. In: Gusta LV, Wisniewski ME, Tanino KK (eds) Plant cold hardiness: from the laboratory to the field. CAB International, Cambridge, pp 214–223

    Chapter  Google Scholar 

  3. Hacker J, Neuner G (2007) Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA). Tree Physiol 27:1661–1670

    Article  PubMed  Google Scholar 

  4. Hacker J, Neuner G (2008) Ice propagation in dehardened alpine plant species studied by infrared differential thermal analysis (IDTA). Arc Antarc Alp Res 40:660–670

    Article  Google Scholar 

  5. Hacker J, Spindelböck J, Neuner G (2008) Mesophyll freezing and effects of freeze dehydration visualized by simultaneous measurement of IDTA and differential imaging chlorophyll fluorescence. Plant Cell Environ 31:1725–1733

    Article  CAS  PubMed  Google Scholar 

  6. Franks F (1985) Biophysics and biochemistry at low temperatures. Cambridge University Press, Cambridge

    Google Scholar 

  7. Chen S-H, Mallamace F, Mou C-Y, Broco M, Corsavo C, Faraone A, Liu L (2006) The violation of the Stokes-Einstein relation in supercooled water. Proc Natl Acad Sci U S A 103: 12974–12978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress. In: Billings WD, Golley F, Lange OL, Olson JS, Remmert H (eds) Ecological studies, vol 62. Springer, New York

    Google Scholar 

  9. Burke MJ, Gusta LV, Quamme HA, Weiser CJ, Li PH (1976) Freezing and injury in plants. Annu Rev Plant Physiol Plant Mol Biol 27: 507–528

    Article  Google Scholar 

  10. Wisniewski M, Lindow SE, Ashworth EN (1997) Observations of ice nucleation and propagation in plants using infrared video thermography. Plant Physiol 113:327–334

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Lutze JL, Roden JS, Holly CJ, Wolfe J, Egerton JJG, Ball MC (1998) Elevated atmospheric [CO2] promotes frost damage in evergreen tree seedlings. Plant Cell Environ 21:631–635

    Article  Google Scholar 

  12. Ball MC, Wolfe J, Canny M, Hofmann M, Nicotra AB, Hughes D (2002) Space and time dependence of temperature and freezing in evergreen leaves. Funct Plant Biol 29: 1259–1272

    Article  Google Scholar 

  13. Sekozawa Y, Sugaya S, Gemma H (2004) Observations of ice nucleation and propagation in flowers of Japanese Pear (Pyrus pyrifolia Nakai) using infrared video thermography. J Jpn Soc Hortic Sci 73:1–6

    Article  Google Scholar 

  14. Neuner G, Xu BC, Hacker J (2010) Velocity and pattern of ice propagation and deep supercooling in woody stems of Castanea sativa, Morus nigra and Quercus robur measured by IDTA. Tree Physiol 30:1037–1045

    Article  PubMed  Google Scholar 

  15. Hacker J, Ladinig U, Wagner J, Neuner G (2011) Inflorescences of alpine cushion plants freeze autonomously and may survive subzero temperatures by supercooling. Plant Sci 180: 149–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Pramsohler M, Hacker J, Neuner G (2012) Freezing pattern and frost killing temperature of apple (Malus domestica) wood under controlled conditions and in nature. Tree Physiol 32:819–828

    Article  PubMed  Google Scholar 

  17. Neuner G, Buchner O (1999) Assessment of foliar frost damage: a comparison of in vivo chlorophyll fluorescence with other viability tests. J Appl Bot 73:50–54

    Google Scholar 

  18. Pearce RS (2001) Plant freezing and damage. Ann Bot 87:417–424

    Article  CAS  Google Scholar 

  19. Neuner G, Hacker J (2012) Ice formation and propagation in alpine plants. In: Lütz C (ed) Plants in alpine regions: cell physiology of adaptation and survival strategies. Springer, Wien, pp 163–174

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Neuner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Neuner, G., Kuprian, E. (2014). Infrared Thermal Analysis of Plant Freezing Processes. In: Hincha, D., Zuther, E. (eds) Plant Cold Acclimation. Methods in Molecular Biology, vol 1166. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0844-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0844-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0843-1

  • Online ISBN: 978-1-4939-0844-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics