Skip to main content

Whole-Genome Identification of Neutrally Evolving Pseudogenes Using the Evolutionary Measure dN/dS

  • Protocol
  • First Online:
Pseudogenes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1167))

Abstract

Starting with the assumption that they are dead copies of genes lacking functionality, and hence that they are not subjected to selective pressure, pseudogenes can be distinguished from protein-coding genes using neutrality and its measure. Here, we describe the different methods that allow to estimate neutral evolution by calculating the ratio between non-synonymous (i.e., causing an amino-acidic change) and synonymous (silent) substitutions and we discuss their application to the identification of pseudogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kimura M (1968) Evolutionary rate at the molecular level. Nature 217(5129):624–626

    Article  CAS  PubMed  Google Scholar 

  2. Kimura M (1977) Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267(5608):275–276

    Article  CAS  PubMed  Google Scholar 

  3. Samonte RV, Eichler EE (2002) Segmental duplications and the evolution of the primate genome. Nat Rev Genet 3(1):65–72

    Article  CAS  PubMed  Google Scholar 

  4. Eichler EE (2001) Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet 17(11):661–669

    Article  CAS  PubMed  Google Scholar 

  5. Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11(2):97–108

    CAS  PubMed  Google Scholar 

  6. Ohno S (1970) Evolution by gene duplication. Springer, Berlin, NY, p, xv

    Google Scholar 

  7. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290(5494):1151–1155

    Article  CAS  PubMed  Google Scholar 

  8. Ayala FJ (1999) Molecular clock mirages. Bioessays 21(1):71–75

    Article  CAS  PubMed  Google Scholar 

  9. Keightley PD (2012) Rates and fitness consequences of new mutations in humans. Genetics 190(2):295–304

    Article  PubMed Central  PubMed  Google Scholar 

  10. Svensson O, Arvestad L, Lagergren J (2006) Genome-wide survey for biologically functional pseudogenes. PLoS Comput Biol 2(5):e46

    Article  PubMed Central  PubMed  Google Scholar 

  11. Miyata T, Yasunaga T (1980) Molecular evolution of mRNA: a method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application. J Mol Evol 16(1):23–36

    Article  CAS  PubMed  Google Scholar 

  12. Ina Y (1995) New methods for estimating the numbers of synonymous and nonsynonymous substitutions. J Mol Evol 40(2):190–226

    Article  CAS  PubMed  Google Scholar 

  13. Li WH, Wu CI, Luo CC (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2(2):150–174

    PubMed  Google Scholar 

  14. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3(5):418–426

    CAS  PubMed  Google Scholar 

  15. Comeron JM (1995) A method for estimating the numbers of synonymous and nonsynonymous substitutions per site. J Mol Evol 41(6):1152–1159

    Article  CAS  PubMed  Google Scholar 

  16. Yang Z, Nielsen R (1998) Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol 46(4):409–418

    Article  CAS  PubMed  Google Scholar 

  17. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120

    Article  CAS  PubMed  Google Scholar 

  18. Perler F et al (1980) The evolution of genes: the chicken preproinsulin gene. Cell 20(2):555–566

    Article  CAS  PubMed  Google Scholar 

  19. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376

    Article  CAS  PubMed  Google Scholar 

  20. Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11(5):725–736

    CAS  PubMed  Google Scholar 

  21. Brown WM et al (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18(4):225–239

    Article  CAS  PubMed  Google Scholar 

  22. Suzuki Y, Gojobori T (1999) A method for detecting positive selection at single amino acid sites. Mol Biol Evol 16(10):1315–1328

    Article  CAS  PubMed  Google Scholar 

  23. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13(5):555–556

    CAS  PubMed  Google Scholar 

  24. Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185(4154):862–864

    Article  CAS  PubMed  Google Scholar 

  25. Chamary JV, Parmley JL, Hurst LD (2006) Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet 7(2):98–108

    Article  CAS  PubMed  Google Scholar 

  26. Torrents D et al (2003) A genome-wide survey of human pseudogenes. Genome Res 13(12):2559–2567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Zheng D et al (2007) Pseudogenes in the ENCODE regions: consensus annotation, analysis of transcription, and evolution. Genome Res 17(6):839–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Olivia Andrieux Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Andrieux, L.O., Arenales, D.T. (2014). Whole-Genome Identification of Neutrally Evolving Pseudogenes Using the Evolutionary Measure dN/dS . In: Poliseno, L. (eds) Pseudogenes. Methods in Molecular Biology, vol 1167. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0835-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0835-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0834-9

  • Online ISBN: 978-1-4939-0835-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics