Skip to main content

Dealing with Pseudogenes in Molecular Diagnostics in the Next-Generation Sequencing Era

  • Protocol
  • First Online:
Pseudogenes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1167))

Abstract

In this chapter, we focus on issues related to the application of next-generation sequencing (NGS) strategies for the analysis of genes with pseudogenes in a clinical setting. Hereby, target enrichment and mapping strategies are crucial factors to avoid “contaminating” pseudogene sequences, which are characterized by higher mutation rates than their functional parental genes. For the target enrichment strategies, we describe advantages and disadvantages of PCR- and capture-based enrichment methodologies. For the mapping strategies, we discuss crucial parameters that need to be considered to accurately distinguish sequences of functional genes from pseudogenic sequences. Finally, we discuss some concrete examples of genes with known pseudogenes and associated with Mendelian disorders that were analyzed by NGS on various platforms and starting from different library preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pei B, Sisu C, Frankish A, Howald C, Habegger L, Mu XJ, Harte R, Balasubramanian S, Tanzer A, Diekhans M, Reymond A, Hubbard TJ, Harrow J, Gerstein MB (2012) The GENCODE pseudogene resource. Genome Biol 13(9):R51. doi:10.1186/gb-2012-13-9-r51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Balasubramanian S, Zheng D, Liu YJ, Fang G, Frankish A, Carriero N, Robilotto R, Cayting P, Gerstein M (2009) Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes. Genome Biol 10(1):R2. doi:10.1186/gb-2009-10-1-r2

    Article  PubMed Central  PubMed  Google Scholar 

  3. Liu YJ, Zheng D, Balasubramanian S, Carriero N, Khurana E, Robilotto R, Gerstein MB (2009) Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: the anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity. BMC Genomics 10:480. doi:10.1186/1471-2164-10-480

    Article  PubMed Central  PubMed  Google Scholar 

  4. Zhang Z, Harrison P, Gerstein M (2002) Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome. Genome Res 12(10):1466–1482. doi:10.1101/gr.331902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T, Johnson N, Kahari AK, Keefe D, Keenan S, Kinsella R, Komorowska M, Koscielny G, Kulesha E, Larsson P, Longden I, McLaren W, Muffato M, Overduin B, Pignatelli M, Pritchard B, Riat HS, Ritchie GR, Ruffier M, Schuster M, Sobral D, Tang YA, Taylor K, Trevanion S, Vandrovcova J, White S, Wilson M, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernandez-Suarez XM, Harrow J, Herrero J, Hubbard TJ, Parker A, Proctor G, Spudich G, Vogel J, Yates A, Zadissa A, Searle SM (2012) Ensembl 2012. Nucleic Acids Res 40(Database issue):D84–D90. doi:10.1093/nar/gkr991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, Nayir A, Bakkaloglu A, Ozen S, Sanjad S, Nelson-Williams C, Farhi A, Mane S, Lifton RP (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106(45):19096–19101. doi:10.1073/pnas.0910672106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46. doi:10.1038/nrg2626

    Article  CAS  PubMed  Google Scholar 

  9. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452(7189):872–876. doi:10.1038/nature06884

    Article  CAS  PubMed  Google Scholar 

  10. de Sousa DM, Hernan I, Pascual B, Borras E, Mane B, Gamundi MJ, Carballo M (2013) Detection of novel mutations that cause autosomal dominant retinitis pigmentosa in candidate genes by long-range PCR amplification and next-generation sequencing. Mol Vis 19:654–664

    Google Scholar 

  11. Ozcelik H, Shi X, Chang MC, Tram E, Vlasschaert M, Di Nicola N, Kiselova A, Yee D, Goldman A, Dowar M, Sukhu B, Kandel R, Siminovitch K (2012) Long-range PCR and next-generation sequencing of BRCA1 and BRCA2 in breast cancer. J Mol Diagn 14(5):467–475. doi:10.1016/j.jmoldx.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  12. Pezeshkpoor B, Zimmer N, Marquardt N, Nanda I, Haaf T, Budde U, Oldenburg J, El-Maarri O (2013) Deep intronic ‘mutations’ cause hemophilia A: application of next generation sequencing in patients without detectable mutation in F8 cDNA. J Thromb Haemost. doi:10.1111/jth.12339

    PubMed  Google Scholar 

  13. Baetens M, Van Laer L, De Leeneer K, Hellemans J, De Schrijver J, Van De Voorde H, Renard M, Dietz H, Lacro RV, Menten B, Van Criekinge W, De Backer J, De Paepe A, Loeys B, Coucke PJ (2011) Applying massive parallel sequencing to molecular diagnosis of Marfan and Loeys-Dietz syndromes. Hum Mutat 32(9):1053–1062. doi:10.1002/humu.21525

    Article  CAS  PubMed  Google Scholar 

  14. De Leeneer K, Hellemans J, De Schrijver J, Baetens M, Poppe B, Van Criekinge W, De Paepe A, Coucke P, Claes K (2011) Massive parallel amplicon sequencing of the breast cancer genes BRCA1 and BRCA2: opportunities, challenges, and limitations. Hum Mutat 32(3):335–344. doi:10.1002/humu.21428

    Article  PubMed  Google Scholar 

  15. Goossens D, Moens LN, Nelis E, Lenaerts AS, Glassee W, Kalbe A, Frey B, Kopal G, De Jonghe P, De Rijk P, Del-Favero J (2009) Simultaneous mutation and copy number variation (CNV) detection by multiplex PCR-based GS-FLX sequencing. Hum Mutat 30(3):472–476. doi:10.1002/humu.20873

    Article  PubMed  Google Scholar 

  16. Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314(5804):1464–1467. doi:10.1126/science.1131370

    Article  CAS  PubMed  Google Scholar 

  17. Spurgeon SL, Jones RC, Ramakrishnan R (2008) High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One 3(2):e1662. doi:10.1371/journal.pone.0001662

    Article  PubMed Central  PubMed  Google Scholar 

  18. Mertes F, Elsharawy A, Sauer S, van Helvoort JM, van der Zaag PJ, Franke A, Nilsson M, Lehrach H, Brookes AJ (2011) Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief Funct Genomics 10(6):374–386. doi:10.1093/bfgp/elr033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hedges DJ, Guettouche T, Yang S, Bademci G, Diaz A, Andersen A, Hulme WF, Linker S, Mehta A, Edwards YJ, Beecham GW, Martin ER, Pericak-Vance MA, Zuchner S, Vance JM, Gilbert JR (2011) Comparison of three targeted enrichment strategies on the SOLiD sequencing platform. PLoS One 6(4):e18595. doi:10.1371/journal.pone.0018595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Tewhey R, Warner JB, Nakano M, Libby B, Medkova M, David PH, Kotsopoulos SK, Samuels ML, Hutchison JB, Larson JW, Topol EJ, Weiner MP, Harismendy O, Olson J, Link DR, Frazer KA (2009) Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol 27(11):1025–1031. doi:10.1038/nbt.1583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Valencia CA, Rhodenizer D, Bhide S, Chin E, Littlejohn MR, Keong LM, Rutkowski A, Bonnemann C, Hegde M (2012) Assessment of target enrichment platforms using massively parallel sequencing for the mutation detection for congenital muscular dystrophy. J Mol Diagn 14(3):233–246. doi:10.1016/j.jmoldx.2012.01.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Asan XY, Jiang H, Tyler-Smith C, Xue Y, Jiang T, Wang J, Wu M, Liu X, Tian G, Wang J, Wang J, Yang H, Zhang X (2011) Comprehensive comparison of three commercial human whole-exome capture platforms. Genome Biol 12(9):R95. doi:10.1186/gb-2011-12-9-r95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Bodi K, Perera AG, Adams PS, Bintzler D, Dewar K, Grove DS, Kieleczawa J, Lyons RH, Neubert TA, Noll AC, Singh S, Steen R, Zianni M (2013) Comparison of commercially available target enrichment methods for next-generation sequencing. J Biomol Tech 24(2):73–86. doi:10.7171/jbt.13-2402-002

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Clark MJ, Chen R, Lam HY, Karczewski KJ, Chen R, Euskirchen G, Butte AJ, Snyder M (2011) Performance comparison of exome DNA sequencing technologies. Nat Biotechnol 29(10):908–914. doi:10.1038/nbt.1975

    Article  CAS  PubMed  Google Scholar 

  25. Parla JS, Iossifov I, Grabill I, Spector MS, Kramer M, McCombie WR (2011) A comparative analysis of exome capture. Genome Biol 12(9):R97. doi:10.1186/gb-2011-12-9-r97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sulonen AM, Ellonen P, Almusa H, Lepisto M, Eldfors S, Hannula S, Miettinen T, Tyynismaa H, Salo P, Heckman C, Joensuu H, Raivio T, Suomalainen A, Saarela J (2011) Comparison of solution-based exome capture methods for next generation sequencing. Genome Biol 12(9):R94. doi:10.1186/gb-2011-12-9-r94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Teer JK, Bonnycastle LL, Chines PS, Hansen NF, Aoyama N, Swift AJ, Abaan HO, Albert TJ, Program NCS, Margulies EH, Green ED, Collins FS, Mullikin JC, Biesecker LG (2010) Systematic comparison of three genomic enrichment methods for massively parallel DNA sequencing. Genome Res 20(10):1420–1431. doi:10.1101/gr.106716.110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Sommer R, Tautz D (1989) Minimal homology requirements for PCR primers. Nucleic Acids Res 17(16):6749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Piriyapongsa J, Ngamphiw C, Assawamakin A, Wangkumhang P, Suwannasri P, Ruangrit U, Agavatpanitch G, Tongsima S (2009) RExPrimer: an integrated primer designing tool increases PCR effectiveness by avoiding 3′ SNP-in-primer and mis-priming from structural variation. BMC Genomics 10 Suppl 3:S4. doi:10.1186/1471-2164-10-S3-S4

  30. Lupski JR, Gonzaga-Jauregui C, Yang Y, Bainbridge MN, Jhangiani S, Buhay CJ, Kovar CL, Wang M, Hawes AC, Reid JG, Eng C, Muzny DM, Gibbs RA (2013) Exome sequencing resolves apparent incidental findings and reveals further complexity of SH3TC2 variant alleles causing Charcot-Marie-Tooth neuropathy. Genome Med 5(6):57. doi:10.1186/gm461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Knies K, Schuster B, Ameziane N, Rooimans M, Bettecken T, de Winter J, Schindler D (2012) Genotyping of fanconi anemia patients by whole exome sequencing: advantages and challenges. PLoS One 7(12):e52648. doi:10.1371/journal.pone.0052648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hatem A, Bozdag D, Toland AE, Catalyurek UV (2013) Benchmarking short sequence mapping tools. BMC Bioinformatics 14:184. doi:10.1186/1471-2105-14-184

    Article  PubMed Central  PubMed  Google Scholar 

  33. O’Rawe J, Jiang T, Sun G, Wu Y, Wang W, Hu J, Bodily P, Tian L, Hakonarson H, Johnson WE, Wei Z, Wang K, Lyon GJ (2013) Low concordance of multiple variant-calling pipelines: practical implications for exome and genome sequencing. Genome Med 5(3):28. doi:10.1186/gm432

    Article  PubMed Central  PubMed  Google Scholar 

  34. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8(3):186–194

    Article  CAS  PubMed  Google Scholar 

  35. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8(3):175–185

    Article  CAS  PubMed  Google Scholar 

  36. Morey M, Fernandez-Marmiesse A, Castineiras D, Fraga JM, Couce ML, Cocho JA (2013) A glimpse into past, present, and future DNA sequencing. Mol Genet Metab 110:3–24. doi:10.1016/j.ymgme.2013.04.024

    Article  CAS  PubMed  Google Scholar 

  37. Loftus BJ, Kim UJ, Sneddon VP, Kalush F, Brandon R, Fuhrmann J, Mason T, Crosby ML, Barnstead M, Cronin L, Deslattes Mays A, Cao Y, Xu RX, Kang HL, Mitchell S, Eichler EE, Harris PC, Venter JC, Adams MD (1999) Genome duplications and other features in 12 Mb of DNA sequence from human chromosome 16p and 16q. Genomics 60(3):295–308. doi:10.1006/geno.1999.5927

    Article  CAS  PubMed  Google Scholar 

  38. Symmons O, Varadi A, Aranyi T (2008) How segmental duplications shape our genome: recent evolution of ABCC6 and PKD1 Mendelian disease genes. Mol Biol Evol 25(12):2601–2613. doi:10.1093/molbev/msn202

    Article  CAS  PubMed  Google Scholar 

  39. Bogdanova N, Markoff A, Gerke V, McCluskey M, Horst J, Dworniczak B (2001) Homologues to the first gene for autosomal dominant polycystic kidney disease are pseudogenes. Genomics 74(3):333–341. doi:10.1006/geno.2001.6568

    Article  CAS  PubMed  Google Scholar 

  40. Rossetti S, Strmecki L, Gamble V, Burton S, Sneddon V, Peral B, Roy S, Bakkaloglu A, Komel R, Winearls CG, Harris PC (2001) Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications. Am J Hum Genet 68(1):46–63. doi:10.1086/316939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Rossetti S, Hopp K, Sikkink RA, Sundsbak JL, Lee YK, Kubly V, Eckloff BW, Ward CJ, Winearls CG, Torres VE, Harris PC (2012) Identification of gene mutations in autosomal dominant polycystic kidney disease through targeted resequencing. J Am Soc Nephrol 23(5):915–933. doi:10.1681/ASN.2011101032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Puget N, Gad S, Perrin-Vidoz L, Sinilnikova OM, Stoppa-Lyonnet D, Lenoir GM, Mazoyer S (2002) Distinct BRCA1 rearrangements involving the BRCA1 pseudogene suggest the existence of a recombination hot spot. Am J Hum Genet 70(4):858–865. doi:10.1086/339434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Barker DF, Liu X, Almeida ER (1996) The BRCA1 and 1A1.3B promoters are parallel elements of a genomic duplication at 17q21. Genomics 38(2):215–222. doi:10.1006/geno.1996.0618

    Article  CAS  PubMed  Google Scholar 

  44. Brown MA, Xu CF, Nicolai H, Griffiths B, Chambers JA, Black D, Solomon E (1996) The 5′ end of the BRCA1 gene lies within a duplicated region of human chromosome 17q21. Oncogene 12(12):2507–2513

    CAS  PubMed  Google Scholar 

  45. Qi XP, Du ZF, Ma JM, Chen XL, Zhang Q, Fei J, Wei XM, Chen D, Ke HP, Liu XZ, Li F, Chen ZG, Su Z, Jin HY, Liu WT, Zhao Y, Jiang HL, Lan ZZ, Li PF, Fang MY, Dong W, Zhang XN (2013) Genetic diagnosis of autosomal dominant polycystic kidney disease by targeted capture and next-generation sequencing: utility and limitations. Gene 516(1):93–100. doi:10.1016/j.gene.2012.12.060

    Article  CAS  PubMed  Google Scholar 

  46. Chou LS, Liu CS, Boese B, Zhang X, Mao R (2010) DNA sequence capture and enrichment by microarray followed by next-generation sequencing for targeted resequencing: neurofibromatosis type 1 gene as a model. Clin Chem 56(1):62–72. doi:10.1373/clinchem.2009.132639

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen B. M. Claes Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Claes, K.B.M., De Leeneer, K. (2014). Dealing with Pseudogenes in Molecular Diagnostics in the Next-Generation Sequencing Era. In: Poliseno, L. (eds) Pseudogenes. Methods in Molecular Biology, vol 1167. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0835-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0835-6_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0834-9

  • Online ISBN: 978-1-4939-0835-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics