Skip to main content

Proteomics Techniques for the Detection of Translated Pseudogenes

  • Protocol
  • First Online:
Pseudogenes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1167))

Abstract

Increasing evidence indicates that pseudogenes can reach the translational process. Translated pseudogene products have in fact been found in various organisms, confuting the original definition of pseudogenes as genes without any coding potential.

Proteomics is the main technology allowing the study of proteins and, when integrated with genomics, is defined as proteogenomics. In proteogenomics, the peptide–genome alignment drives the identification and annotation of gene products and allows for a better understanding of their function.

In this chapter, we give a brief overview of the proteomic techniques applied to pseudogenes. In particular, we discuss peptide spectrum acquisition, mass data analysis, and genome database matching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Ansong C, Purvine SO, Adkins JN, Lipton MS, Smith RD (2008) Proteogenomics: needs and roles to be filled by proteomics in genome annotation. Brief Funct Genomic Proteomic 7:50–62. doi:10.1093/bfgp/eln010

    Article  CAS  PubMed  Google Scholar 

  3. Jaffe JD, Berg HC, Church GM (2004) Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics 4:59–77. doi:10.1002/pmic.200300511

    Article  CAS  PubMed  Google Scholar 

  4. Dove A (1999) Proteomics: translating genomics into products? Nat Biotechnol 17:233–236. doi:10.1038/6972

    Article  CAS  PubMed  Google Scholar 

  5. Yates JR, Eng JK, McCormack AL, Schieltz D (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67:1426–1436

    Article  CAS  PubMed  Google Scholar 

  6. Wolters DA, Washburn MP, Yates JR (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690

    Article  CAS  PubMed  Google Scholar 

  7. Vanin EF (1985) Processed pseudogenes: characteristics and evolution. Annu Rev Genet 19:253–272. doi:10.1146/annurev.ge.19.120185.001345

    Article  CAS  PubMed  Google Scholar 

  8. Edgar AJ (2002) The human L-threonine 3-dehydrogenase gene is an expressed pseudogene. BMC Genet 3:18

    Article  PubMed Central  PubMed  Google Scholar 

  9. Boger ET, Sellers JR, Friedman TB (2001) Human myosin XVBP is a transcribed pseudogene. J Muscle Res Cell Motil 22:477–483

    Article  CAS  PubMed  Google Scholar 

  10. Guo N, Mogues T, Weremowicz S, Morton CC, Sastry KN (1998) The human ortholog of rhesus mannose-binding protein-A gene is an expressed pseudogene that localizes to chromosome 10. Mamm Genome 9:246–249

    Article  CAS  PubMed  Google Scholar 

  11. Poliseno L (2012) Pseudogenes: newly discovered players in human cancer. Sci Signal 5:re5. doi:10.1126/scisignal.2002858

    Article  PubMed  Google Scholar 

  12. Gupta N, Tanner S, Jaitly N, Adkins JN, Lipton M, Edwards R, Romine M, Osterman A, Bafna V, Smith RD, Pevzner PA (2007) Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation. Genome Res 17:1362–1377. doi:10.1101/gr.6427907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Castellana NE, Payne SH, Shen Z, Stanke M, Bafna V, Briggs SP (2008) Discovery and revision of Arabidopsis genes by proteogenomics. Proc Natl Acad Sci U S A 105:21034–21038. doi:10.1073/pnas.0811066106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Merrihew GE, Davis C, Ewing B, Williams G, Käll L, Frewen BE, Noble WS, Green P, Thomas JH, MacCoss MJ (2008) Use of shotgun proteomics for the identification, confirmation, and correction of C. elegans gene annotations. Genome Res 18:1660–1669. doi:10.1101/gr.077644.108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Schrimpe-Rutledge AC, Jones MB, Chauhan S, Purvine SO, Sanford JA, Monroe ME, Brewer HM, Payne SH, Ansong C, Frank BC, Smith RD, Peterson SN, Motin VL, Adkins JN (2012) Comparative omics-driven genome annotation refinement: application across Yersiniae. PLoS One 7:e33903. doi:10.1371/journal.pone.0033903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Feng Y, Chien K-Y, Chen H-L, Chiu C-H (2012) Pseudogene recoding revealed from proteomic analysis of salmonella serovars. J Proteome Res 11:1715–1719. doi:10.1021/pr200904c

    Article  CAS  PubMed  Google Scholar 

  17. Brosch M, Saunders GI, Frankish A, Collins MO, Yu L, Wright J, Verstraten R, Adams DJ, Harrow J, Choudhary JS, Hubbard T (2011) Shotgun proteomics aids discovery of novel protein-coding genes, alternative splicing, and “resurrected” pseudogenes in the mouse genome. Genome Res 21:756–767. doi:10.1101/gr.114272.110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ezkurdia I, del Pozo A, Frankish A, Rodriguez JM, Harrow J, Ashman K, Valencia A, Tress ML (2012) Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function. Mol Biol Evol 29:2265–2283. doi:10.1093/molbev/mss100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kelleher NL (2004) Top-down proteomics. Anal Chem 76:197A–203A

    Article  PubMed  Google Scholar 

  20. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207. doi:10.1038/nature01511

    Article  CAS  PubMed  Google Scholar 

  21. Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD (2012) Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev 41:3912–3928. doi:10.1039/c2cs15331a

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Doucette AA, Tran JC, Wall MJ, Fitzsimmons S (2011) Intact proteome fractionation strategies compatible with mass spectrometry. Expert Rev Proteomics 8:787–800. doi:10.1586/epr.11.67

    Article  CAS  PubMed  Google Scholar 

  23. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed Central  PubMed  Google Scholar 

  24. Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243

    CAS  PubMed  Google Scholar 

  25. Guerrier L, Fortis F, Boschetti E (2012) Solid-phase fractionation strategies applied to proteomics investigations. Methods Mol Biol 818:11–33. doi:10.1007/978-1-61779-418-6_2

    Article  CAS  PubMed  Google Scholar 

  26. Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473. doi:10.1146/annurev.biochem.70.1.437

    Article  CAS  PubMed  Google Scholar 

  27. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  CAS  PubMed  Google Scholar 

  28. Tang N, Tornatore P, Weinberger SR (2004) Current developments in SELDI affinity technology. Mass Spectrom Rev 23:34–44. doi:10.1002/mas.10066

    Article  CAS  PubMed  Google Scholar 

  29. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  30. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989. doi:10.1016/1044-0305(94)80016-2

    Article  CAS  PubMed  Google Scholar 

  31. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajan J, Despacio-Reyes G, Saunders G, Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, Chrast J, Walters N, Balasubramanian S, Pei B, Tress M, Rodriguez JM, Ezkurdia I, van Baren J, Brent M, Haussler D, Kellis M, Valencia A, Reymond A, Gerstein M, Guigó R, Hubbard TJ (2012) GENCODE: the reference human genome annotation for the ENCODE Project. Genome Res 22:1760–1774. doi:10.1101/gr.135350.111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Rocchiccioli Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ucciferri, N., Rocchiccioli, S. (2014). Proteomics Techniques for the Detection of Translated Pseudogenes. In: Poliseno, L. (eds) Pseudogenes. Methods in Molecular Biology, vol 1167. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0835-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0835-6_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0834-9

  • Online ISBN: 978-1-4939-0835-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics