Skip to main content

Pseudogene Redux with New Biological Significance

  • Protocol
  • First Online:
Pseudogenes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1167))

Abstract

The study of pseudogenes, originally dismissed as genomic relics of evolutionary selection, has seen a resurgence in scientific literature, in addition to being a peculiar topic of discussion in theological debates. For a long time, pseudogenes have been touted as a beacon of natural selection and a definitive proof of evolution due to the slow mutation rate that differentiated them from their parental genes and ultimately caused their genetic demise as functional genes. It now seems that “creationists” have co-opted some recent reports identifying unheralded biological functions to pseudogens and other noncoding RNAs as evidence to undermine the existence of evolution and supporting intelligent design. This issue of Methods in Molecular Biology focused on pseudogenes will certainly not end, nor enter this debate; however, scientists who are also genomics and pseudogene enthusiasts will certainly appreciate that many scientists are thinking about these particular genetic elements in new and interesting ways. With this new interest in a biological significance and “non-junk” role for pseudogenes and other noncoding RNAs, new methods and approaches are being developed to unlock the mystery of these ancient artifacts we know as pseudogenes. In this brief introductory chapter we highlight the renewed interest in pseudogenes and review a rationale for intensification of pseudogene-related research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D’errico I, Gadaleta G, Saccone C (2004) Pseudogenes in metazoa: origin and features. Brief Funct Genomic Proteomic 3:157–167

    Article  PubMed  Google Scholar 

  2. Torrents D, Suyama M, Zdobnov E, Bork P (2003) A genome-wide survey of human pseudogenes. Genome Res 13:2559–2567. doi:10.1101/gr.1455503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Pei B, Sisu C, Frankish A et al (2012) The GENCODE pseudogene resource. Genome Biol 13:R51. doi:10.1186/gb-2012-13-9-r51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Zhang Z, Carriero N, Gerstein M (2004) Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet 20:62–67. doi:10.1016/j.tig.2003.12.005

    Article  PubMed  Google Scholar 

  5. Kasatkar P, Shetty S, Ghosh K (2010) VWF pseudogene: mimics, masks and spoils. Clin Chim Acta 411:607–609. doi:10.1016/j.cca.2009.12.024

    Article  CAS  PubMed  Google Scholar 

  6. Whang YE, Wu X, Sawyers CL (1998) Identification of a pseudogene that can masquerade as a mutant allele of the PTEN/MMAC1 tumor suppressor gene. J Natl Cancer Inst 90:859–861

    Article  CAS  PubMed  Google Scholar 

  7. Flachsbart F, Möller M, Däumer C et al (2013) Genetic investigation of FOXO3A requires special attention due to sequence homology with FOXO3B. Eur J Hum Genet 21:240–242. doi:10.1038/ejhg.2012.83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Rouchka E, Cha I (2009) Current trends in pseudogene detection and characterization. Curr Bioinformatics 4(2):112–119

    Google Scholar 

  9. Zhang Z, Gerstein M (2004) Large-scale analysis of pseudogenes in the human genome. Curr Opin Genet Dev 14:328–335. doi:10.1016/j.gde.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Z, Harrison PM, Liu Y, Gerstein M (2003) Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 13(12):2541–2558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zhang Z, Zhang Z, Carriero N et al (2006) PseudoPipe: an automated pseudogene identification pipeline. Bioinformatics 22:1437–1439. doi:10.1093/bioinformatics/btl116

    Article  CAS  PubMed  Google Scholar 

  12. Solovyev V, Solovyev V, Kosarev P et al (2006) Genome Biol 7:S10. doi:10.1186/gb-2006-7-s1-s10

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kent WJ, Baertsch R, Hinrichs A et al (2011) Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci 100:11484–11489. doi:10.1073/pnas.1932072100

    Article  Google Scholar 

  14. Schwartz S (2003) Human-mouse alignments with BLASTZ. Genome Res 13:103–107. doi:10.1101/gr.809403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Pavlicek A, Gentles AJ, Paces J et al (2006) Retroposition of processed pseudogenes: the impact of RNA stability and translational control. Trends Genet 22:69–73. doi:10.1016/j.tig.2005.11.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lam HYK, Khurana E, Fang G et al (2009) Pseudofam: the pseudogene families database. Nucleic Acids Res 37:D738–D743. doi:10.1093/nar/gkn758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Chan W-L, Yang W-K, Huang H-D, Chang J-G (2013) PseudoMap: an innovative and comprehensive resource for identification of siRNA-mediated mechanisms in human transcribed pseudogenes. Database (Oxford) 2013:bat001. doi:10.1093/database/bat001

    Article  Google Scholar 

  18. Bischof JM, Chiang AP, Scheetz TE et al (2006) Genome-wide identification of pseudogenes capable of disease-causing gene conversion. Hum Mutat 27:545–552. doi:10.1002/humu. 20335

  19. Karro JE, Yan Y, Zheng D et al (2007) Pseudogene.org: a comprehensive database and comparison platform for pseudogene annotation. Nucleic Acids Res 35:D55–D60. doi:10.1093/nar/gkl851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bhartiya D, Jalali S, Ghosh S, Scaria V (2013) Distinct patterns of genetic variations in potential functional elements in long noncoding RNAs. Hum Mutat 35:192–201. doi:10.1002/humu.22472

    Article  PubMed  Google Scholar 

  21. Kalyana-Sundaram S, Kumar-Sinha C, Shankar S et al (2012) Expressed pseudogenes in the transcriptional landscape of human cancers. Cell 149:1622–1634. doi:10.1016/j.cell.2012.04.041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Suo G, Han J, Wang X et al (2005) Oct4 pseudogenes are transcribed in cancers. Biochem Biophys Res Commun 337:1047–1051. doi:10.1016/j.bbrc.2005.09.157

    Article  CAS  PubMed  Google Scholar 

  23. Bristow J, Gitelman SE, Tee MK et al (1993) Abundant adrenal-specific transcription of the human P450c21A “pseudogene”. J Biol Chem 268:12919–12924

    CAS  PubMed  Google Scholar 

  24. Bier A, Oviedo-Landaverde I, Zhao J et al (2009) Connexin43 pseudogene in breast cancer cells offers a novel therapeutic target. Mol Cancer Ther 8:786–793. doi:10.1158/1535-7163.MCT-08-0930

    Article  CAS  PubMed  Google Scholar 

  25. Han YJ, Ma SF, Yourek G et al (2011) A transcribed pseudogene of MYLK promotes cell proliferation. FASEB J 25:2305–2312. doi:10.1096/fj.10-177808

    Article  CAS  PubMed  Google Scholar 

  26. Lu W, Zhou D, Glusman G et al (2006) KLK31P is a novel androgen regulated and transcribed pseudogene of kallikreins that is expressed at lower levels in prostate cancer cells than in normal prostate cells. Prostate 66:936–944. doi:10.1002/pros.20382

    Article  CAS  PubMed  Google Scholar 

  27. Poliseno L, Salmena L, Zhang J et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038. doi:10.1038/nature 09144

  28. Liu L, Liu Y, Liu J et al (2013) Genetic variants in pseudogene E2F3P1 confer risk for HBV-related hepatocellular carcinoma in a Chinese population. J Biomed Res 27:215–219. doi:10.7555/JBR.27.20130019

    Article  PubMed Central  PubMed  Google Scholar 

  29. Korneev SA, Park JH, O’Shea M (1999) Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene. J Neurosci 19:7711–7720

    CAS  PubMed  Google Scholar 

  30. Chiefari E, Iiritano S, Paonessa F et al (2010) Pseudogene-mediated posttranscriptional silencing of HMGA1 can result in insulin resistance and type 2 diabetes. Nat Commun 1:40. doi:10.1038/ncomms1040

    Article  PubMed  Google Scholar 

  31. Hirotsune S, Hirotsune S, Yoshida N et al (2003) An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature 423:91–96. doi:10.1038/nature01535

    Article  CAS  PubMed  Google Scholar 

  32. Wang L, Guo Z-Y, Zhang R et al (2013) Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis 34:1773–1781. doi:10.1093/carcin/bgt139

    Article  CAS  PubMed  Google Scholar 

  33. Salmena L, Poliseno L, Tay Y et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358. doi:10.1016/j.cell.2011.07.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Cesana M, Cacchiarelli D, Legnini I et al (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369. doi:10.1016/j.cell.2011.09.028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Wang Y, Xu Z, Jiang J et al (2013) Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 25:69–80. doi:10.1016/j.devcel.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  36. Tam OH, Aravin AA, Stein P et al (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453:534–538. doi:10.1038/nature 06904

  37. Watanabe T, Watanabe T, Totoki Y et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543. doi:10.1038/nature 06908

  38. Chan W-L, Yuo C-Y, Yang W-K et al (2013) Transcribed pseudogene ψPPM1K generates endogenous siRNA to suppress oncogenic cell growth in hepatocellular carcinoma. Nucleic Acids Res 41:3734–3747. doi:10.1093/nar/gkt047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Johnsson P, Ackley A, Vidarsdottir L et al (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20:440–446. doi:10.1038/nsmb.2516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hawkins PG, Morris KV (2010) Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 1:165–175. doi:10.4161/trns.1.3.13332

    Article  PubMed Central  PubMed  Google Scholar 

  41. Poliseno L (2012) Pseudogenes: newly discovered players in human cancer. Sci Signal 5:re5. doi:10.1126/scisignal.2002858

    Article  PubMed  Google Scholar 

  42. Pink RC, Wicks K, Caley DP et al (2011) Pseudogenes: pseudo-functional or key regulators in health and disease? RNA 17:792–798. doi:10.1261/rna.2658311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Li W, Yang W, Wang X-J (2013) Pseudogenes: pseudo or real functional elements? J Genet Genomics 40:171–177. doi:10.1016/j.jgg. 2013.03.003

  44. Zou M, Baitei EY, Alzahrani AS et al (2009) Oncogenic activation of MAP kinase by BRAF pseudogene in thyroid tumors. Neoplasia 11: 57–65

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Sun C, Orozco O, Olson DL et al (2008) CRIPTO3, a presumed pseudogene, is expressed in cancer. Biochem Biophys Res Commun 377:215–220. doi:10.1016/j.bbrc. 2008.09.113

  46. Betran E, Wang W, Jin L, Long M (2002) Evolution of the phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene. Mol Biol Evol 19:654–663

    Article  CAS  PubMed  Google Scholar 

  47. Kandouz M, Bier A, Carystinos GD et al (2004) Connexin43 pseudogene is expressed in tumor cells and inhibits growth. Oncogene 23:4763–4770. doi:10.1038/sj.onc.1207506

    Article  CAS  PubMed  Google Scholar 

  48. Brosch M, Saunders GI, Frankish A et al (2011) Shotgun proteomics aids discovery of novel protein-coding genes, alternative splicing, and “resurrected” pseudogenes in the mouse genome. Genome Res 21:756–767. doi:10.1101/gr.114272.110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Ezkurdia I, del Pozo A, Frankish A et al (2012) Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function. Mol Biol Evol 29:2265–2283. doi:10.1093/molbev/mss100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

LS is supported by a Career Development Award from the Human Frontier Science Program Organization. Critical reading by L. Poliseno was greatly appreciated. Apologies to those whose work was not cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Salmena Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Salmena, L. (2014). Pseudogene Redux with New Biological Significance. In: Poliseno, L. (eds) Pseudogenes. Methods in Molecular Biology, vol 1167. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0835-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0835-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0834-9

  • Online ISBN: 978-1-4939-0835-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics