Skip to main content

Analysis of NFATc1-Centered Transcription Factor Regulatory Networks in Osteoclast Formation

  • Protocol
  • First Online:
Transcription Factor Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1164))

Abstract

Osteoclasts are bone-resorbing cells that differentiate from the macrophage/monocyte lineage. The master transcription factor NFATc1 has a central role in the process of this differentiation. Thus, it is important to understand the NFATc1-centered transcription factor regulatory networks (TFRNs) in terms of the mechanisms of NFATc1 expression and activation as well as the gene expression regulated by NFATc1. The Genome Network Project has provided a unique opportunity for the analysis of NFATc1-centered TFRNs in osteoclasts. Here we introduce a report on the application of the methods established by the project for osteoclast biology and a summarization of the results obtained in this project thus far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406

    Article  CAS  PubMed  Google Scholar 

  2. Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7:292–304

    Article  CAS  PubMed  Google Scholar 

  3. Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514

    Article  CAS  PubMed  Google Scholar 

  4. Theill LE, Boyle WJ, Penninger JM (2002) RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 20:795–823

    Article  CAS  PubMed  Google Scholar 

  5. Xing L, Schwarz EM, Boyce BF (2005) Osteoclast precursors, RANKL/RANK, and immunology. Immunol Rev 208:19–29

    Article  CAS  PubMed  Google Scholar 

  6. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T et al (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428:758–763

    Article  CAS  PubMed  Google Scholar 

  7. Shinohara M, Koga T, Okamoto K, Sakaguchi S, Arai K, Yasuda H, Takai T, Kodama T, Morio T, Geha RS et al (2008) Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell 132:794–806

    Article  CAS  PubMed  Google Scholar 

  8. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J et al (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  CAS  PubMed  Google Scholar 

  9. Takayanagi H (2009) Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol 5:667–676

    Article  CAS  PubMed  Google Scholar 

  10. Weilbaecher KN, Motyckova G, Huber WE, Takemoto CM, Hemesath TJ, Xu Y, Hershey CL, Dowland NR, Wells AG, Fisher DE (2001) Linkage of M-CSF signaling to Mitf, TFE3, and the osteoclast defect in Mitf(mi/mi) mice. Mol Cell 8:749–758

    Article  CAS  PubMed  Google Scholar 

  11. Tondravi MM, McKercher SR, Anderson K, Erdmann JM, Quiroz M, Maki R, Teitelbaum SL (1997) Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 386:81–84

    Article  CAS  PubMed  Google Scholar 

  12. Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-κB1 and NF-κB2. Nat Med 3:1285–1289

    Article  CAS  PubMed  Google Scholar 

  13. Johnson RS, Spiegelman BM, Papaioannou V (1992) Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell 71:577–586

    Article  CAS  PubMed  Google Scholar 

  14. Wang ZQ, Ovitt C, Grigoriadis AE, Mohle-Steinlein U, Ruther U, Wagner EF (1992) Bone and haematopoietic defects in mice lacking c-fos. Nature 360:741–745

    Article  CAS  PubMed  Google Scholar 

  15. Matsuo K, Owens JM, Tonko M, Elliott C, Chambers TJ, Wagner EF (2000) Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat Genet 24:184–187

    Article  CAS  PubMed  Google Scholar 

  16. Ikeda F, Nishimura R, Matsubara T, Tanaka S, Inoue J, Reddy SV, Hata K, Yamashita K, Hiraga T, Watanabe T et al (2004) Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest 114:475–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kenner L, Hoebertz A, Beil T, Keon N, Karreth F, Eferl R, Scheuch H, Szremska A, Amling M, Schorpp-Kistner M et al (2004) Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J Cell Biol 164:613–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wan Y, Chong LW, Evans RM (2007) PPAR-γ regulates osteoclastogenesis in mice. Nat Med 13:1496–1503

    Article  CAS  PubMed  Google Scholar 

  19. Ishii KA, Fumoto T, Iwai K, Takeshita S, Ito M, Shimohata N, Aburatani H, Taketani S, Lelliott CJ, Vidal-Puig A et al (2009) Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med 15:259–266

    Article  CAS  PubMed  Google Scholar 

  20. Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW, Serfling E et al (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202:1261–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nishikawa K, Nakashima T, Hayashi M, Fukunaga T, Kato S, Kodama T, Takahashi S, Calame K, Takayanagi H (2010) Blimp1-mediated repression of negative regulators is required for osteoclast differentiation. Proc Natl Acad Sci U S A 107:3117–3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported in part by a grant for Genome Network Project from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT), and a grant for ERATO, Takayanagi Osteonetwork Project from the Japan Science and Technology Agency (H. T.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takayanagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shinohara, M., Takayanagi, H. (2014). Analysis of NFATc1-Centered Transcription Factor Regulatory Networks in Osteoclast Formation. In: Miyamoto-Sato, E., Ohashi, H., Sasaki, H., Nishikawa, Ji., Yanagawa, H. (eds) Transcription Factor Regulatory Networks. Methods in Molecular Biology, vol 1164. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0805-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0805-9_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0804-2

  • Online ISBN: 978-1-4939-0805-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics