Skip to main content

Targeted Gene Deletion in Saccharomyces cerevisiae and Schizosaccharomyces pombe

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1163))

Abstract

Gene deletion is an important element in the functional characterization of gene and protein function. Efficient tools for gene deletion have been developed in the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, all of which rely on the replacement of the endogenous gene of interest with a selectable marker gene by homologous recombination. In order to minimize incidental recombination events between DNA sequences within the marker gene and a chromosomal sequence, gene deletion cassettes consisting entirely of heterologous DNA sequences are preferred. The gene deletion cassettes, which are composed of the marker gene flanked by short DNA segments homologous to the chromosomal sequences lying to the left and right of the gene to be deleted, are generated by PCR and mediate highly efficient one-step gene deletion events. Incorporation of loxP sites flanking the marker gene allows Cre recombinase-mediated rescue, so that the marker can be reused for the next gene deletion. This is particularly useful for the characterization of gene families in S. cerevisiae. The one-step gene deletion method is not limited to the elimination of individual genes, but can also be used for the removal of chromosomal segments exceeding 100 kbp in length. Here we describe a comprehensive set of gene deletion cassettes and outline their use in S. cerevisiae and S. pombe.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  2. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  PubMed  Google Scholar 

  3. Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M, Yoo HS, Duhig T, Nam M, Palmer G, Han S, Jeffery L, Baek ST, Lee H, Shim YS, Lee M, Kim L, Heo KS, Noh EJ, Lee AR, Jang YJ, Chung KS, Choi SJ, Park JY, Park Y, Kim HM, Park SK, Park HJ, Kang EJ, Kim HB, Kang HS, Park HM, Kim K, Song K, Song KB, Nurse P, Hoe KL (2010) Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 28:617–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624

    Article  CAS  PubMed  Google Scholar 

  5. Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128

    Article  CAS  PubMed  Google Scholar 

  6. Rothstein R (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194:281–301

    Article  CAS  PubMed  Google Scholar 

  7. Güldener U, Heck S, Fiedler T, Beinhauer JD, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    Article  PubMed Central  PubMed  Google Scholar 

  8. Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Delneri D, Tomlin GC, Wixon JL, Hutter A, Sefton M, Louis EJ, Oliver SG (2000) Exploring redundancy in the yeast genome: an improved strategy for use of the cre-loxP system. Gene 252:127–135

    Article  CAS  PubMed  Google Scholar 

  10. Carter Z, Delneri D (2010) New generation of loxP-mutated deletion cassettes for the genetic manipulation of yeast natural isolates. Yeast 27:765–775

    Article  CAS  PubMed  Google Scholar 

  11. Johnston M, Riles L, Hegemann JH (2002) Gene disruption. Methods Enzymol 350:290–315

    Article  CAS  PubMed  Google Scholar 

  12. Park YN, Masison D, Eisenberg E, Greene LE (2011) Application of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae. Yeast 28:673–681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fang F, Salmon K, Shen MW, Aeling KA, Ito E, Irwin B, Tran UP, Hatfield GW, Da Silva NA, Sandmeyer S (2010) A vector set for systematic metabolic engineering in Saccharomyces cerevisiae. Yeast 28:123–136

    Article  PubMed Central  PubMed  Google Scholar 

  14. Fickers P, Le Dall MT, Gaillardin C, Thonart P, Nicaud JM (2003) New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Methods 55:727–737

    Article  CAS  PubMed  Google Scholar 

  15. Ribeiro O, Gombert AK, Teixeira JA, Domingues LJ (2007) Application of the Cre-loxP system for multiple gene disruption in the yeast Kluyveromyces marxianus. J Biotechnol 131:20–26

    Article  CAS  PubMed  Google Scholar 

  16. Erler A, Maresca M, Fu J, Stewart AF (2006) Recombineering reagents for improved inducible expression and selection marker re-use in Schizosaccharomyces pombe. Yeast 23:813–823

    Article  CAS  PubMed  Google Scholar 

  17. Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA 103:10352–10357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Dennison PM, Ramsdale M, Manson CL, Brown AJ (2005) Gene disruption in Candida albicans using a synthetic, codon-optimised Cre-loxP system. Fungal Genet Biol 42:737–748

    Article  CAS  PubMed  Google Scholar 

  19. Qian W, Song H, Liu Y, Zhang C, Niu Z, Wang H, Qiu BJ (2009) Improved gene disruption method and Cre-loxP mutant system for multiple gene disruptions in Hansenula polymorpha. J Microbiol Methods 79:253–259

    Article  CAS  PubMed  Google Scholar 

  20. Iwaki T, Takegawa K (2004) A set of loxP marker cassettes for Cre-mediated multiple gene disruption in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 68:545–550

    Article  CAS  PubMed  Google Scholar 

  21. Steensma HY, Ter Linde JJ (2001) Plasmids with the Cre-recombinase and the dominant nat marker, suitable for use in prototrophic strains of Saccharomyces cerevisiae and Kluyveromyces lactis. Yeast 18:469–472

    Article  CAS  PubMed  Google Scholar 

  22. Ikushima S, Fujii T, Kobayashi O (2009) Efficient gene disruption in the high-ploidy yeast Candida utilis using the Cre-loxP system. Biosci Biotechnol Biochem 73:879–884

    Article  CAS  PubMed  Google Scholar 

  23. Patel RD, Lodge JK, Baker LG (2010) Going green in Cryptococcus neoformans: the recycling of a selectable drug marker. Fungal Genet Biol 47:191–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Heinisch JJ, Buchwald U, Gottschlich A, Heppeler N, Rodicio R (2010) A tool kit for molecular genetics of Kluyveromyces lactis comprising a congenic strain series and a set of versatile vectors. FEMS Yeast Res 10:333–4225

    Article  CAS  PubMed  Google Scholar 

  25. Forment JV, Ramón D, MacCabe AP (2006) Consecutive gene deletions in Aspergillus nidulans: application of the Cre/loxP system. Curr Genet 50:217–224

    Article  CAS  PubMed  Google Scholar 

  26. Krappmann S, Bayram O, Braus GH (2005) Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot Cell 4:1298–1307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mizutani O, Masaki K, Gomi K, Iefuji H (2012) Modified Cre-loxP recombination in Aspergillus oryzae by direct introduction of Cre recombinase for marker gene rescue. Appl Environ Microbiol 78:4126–4133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Watson AT, Werler P, Carr AM (2011) Regulation of gene expression at the fission yeast Schizosaccharomyces pombe urg1 locus. Gene 484:75–85

    Article  CAS  PubMed  Google Scholar 

  29. Pluthero FG (1993) Rapid purification of high-activity Taq DNA polymerase. Nucleic Acids Res 21:4850–4851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  CAS  PubMed  Google Scholar 

  31. Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3–41

    Article  CAS  PubMed  Google Scholar 

  32. Bähler J, Wu JQ, Longtine MS, Shah NG, McKenzie A 3rd, Steever AB, Wach A, Philippsen P, Pringle JR (1998) Heterologous modules for efficient and versatile PCR-basedgene targeting in Schizosaccharomyces pombe. Yeast 14:943–951

    Article  PubMed  Google Scholar 

  33. Hentges P, Van Driessche B, Tafforeau L, Vandenhaute J, Carr AM (2005) Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe. Yeast 22:1013–1019

    Article  CAS  PubMed  Google Scholar 

  34. Sato M, Dhut S, Toda T (2005) New drug-resistant cassettes for gene disruption and epitope tagging in Schizosaccharomyces pombe. Yeast 22:583–591

    Article  CAS  PubMed  Google Scholar 

  35. Altschu SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  Google Scholar 

  36. Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823

    Article  CAS  PubMed  Google Scholar 

  37. Entian KD, Schuster T, Hegemann JH, Becher D, Feldmann H, Güldener U, Götz R, Hansen M, Hollenberg CP, Jansen G, Kramer W, Klein S, Kötter P, Kricke J, Launhardt H, Mannhaupt G, Maierl A, Meyer P, Mewes W, Munder T, Niedenthal RK, Ramezani Rad M, Röhmer A, Römer A, Hinnen A et al (1999) Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Mol Gen Genet 262:683–702

    Article  CAS  PubMed  Google Scholar 

  38. Hegemann JH, Heick SB (2011) Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae. Methods Mol Biol 765:189–206

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johannes H. Hegemann or Ursula Fleig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hegemann, J.H., Heick, S.B., Pöhlmann, J., Langen, M.M., Fleig, U. (2014). Targeted Gene Deletion in Saccharomyces cerevisiae and Schizosaccharomyces pombe . In: Xiao, W. (eds) Yeast Protocols. Methods in Molecular Biology, vol 1163. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0799-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0799-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0798-4

  • Online ISBN: 978-1-4939-0799-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics