Skip to main content

Screening Combinatorial Libraries of Cyclic Peptides Using the Yeast Two-Hybrid Assay

  • Protocol
  • First Online:
Yeast Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1163))

Abstract

Peptides are useful reagents for reverse analysis of protein function in a variety of organisms, as they have a dominant mode of action that can inhibit protein interactions or activities. Further, peptides are important tools for validating proteins as therapeutic targets, for determining structure/activity relationships, and for designing small molecules. Genetic selection strategies have been developed for screening combinatorial peptide libraries to rapidly isolate peptides that interact with a given target. In genetic selections and biological assays, linear peptides are not very stable and are rapidly degraded. In contrast, cyclic peptides are more stable and bind with higher affinity. Genetic selections of cyclic peptides are difficult as they are not compatible with most selection technologies. Thus, there has been limited number of applications that use cyclic peptides for the reverse analysis of protein function.

Here, we describe a protocol to isolate cyclic peptides that bind proteins in the yeast two-hybrid assay. Cyclic peptides used in the yeast two-hybrid assay are referred to as “lariat” peptides. Lariat peptides are made by blocking the intein-producing cyclic peptide reaction at an intermediate step. They consist of a lactone cyclic peptide or “noose” region connected by an amide bond to a transcription activation domain. Combinatorial libraries of >107 lariat peptides can be screened using the yeast two-hybrid assay to isolate lariat peptides for studying the function or validating the therapeutic potential of protein targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brien G, Debaud AL, Bickle M, Trescol-Biemont MC, Moncorge O, Colas P et al (2011) Characterization of peptide aptamers targeting Bfl-1 anti-apoptotic protein. Biochemistry 50:5120–5129

    Article  CAS  PubMed  Google Scholar 

  2. Bardou C, Borie C, Bickle M, Rudkin BB, Colas P (2009) Peptide aptamers for small molecule drug discovery. Methods Mol Biol 535:373–388

    Article  CAS  PubMed  Google Scholar 

  3. Gibert B, Hadchity E, Czekalla A, Aloy MT, Colas P, Rodriguez-Lafrasse C et al (2011) Inhibition of heat shock protein 27 (HspB1) tumorigenic functions by peptide aptamers. Oncogene 30:3672–3681

    Article  CAS  PubMed  Google Scholar 

  4. Reichert JM (2012) Marketed therapeutic antibodies compendium. MAbs 4:413–415

    Article  PubMed Central  PubMed  Google Scholar 

  5. Wang X, Li G, Ren Y, Ren X (2011) Phages bearing affinity peptides to bovine rotavirus differentiate the virus from other viruses. PLoS One 6:e28667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Li J, Tan S, Chen X, Zhang CY, Zhang Y (2011) Peptide aptamers with biological and therapeutic applications. Curr Med Chem 18:4215–4222

    Article  CAS  PubMed  Google Scholar 

  7. Clark RJ, Craik DJ (2012) Engineering cyclic peptide toxins. Methods Enzymol 503:57–74

    Article  CAS  PubMed  Google Scholar 

  8. Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9:767–774

    Article  CAS  PubMed  Google Scholar 

  9. Ladner RC (1995) Constrained peptides as binding entities. Trends Biotechnol 13:426–430

    Article  CAS  PubMed  Google Scholar 

  10. Cohen BA, Colas P, Brent R (1998) An artificial cell-cycle inhibitor isolated from a combinatorial library. Proc Natl Acad Sci U S A 95:14272–14277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Koide A, Bailey CW, Huang X, Koide S (1998) The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol 284:1141–1151

    Article  CAS  PubMed  Google Scholar 

  12. Forrer P, Stumpp MT, Binz HK, Plückthun A (2003) A novel strategy to design binding molecules harnessing the modular nature of repeat proteins. FEBS Lett 539:2–6

    Article  CAS  PubMed  Google Scholar 

  13. Skerra A (2008) Alternative binding proteins: anticalins—harnessing the structural plasticity of the lipocalin ligand pocket to engineer novel binding activities. FEBS J 275:2677–2683

    Article  CAS  PubMed  Google Scholar 

  14. Skerra A (2007) Alternative non-antibody scaffolds for molecular recognition. Curr Opin Biotechnol 18:295–304

    Article  CAS  PubMed  Google Scholar 

  15. Colas P, Cohen B, Jessen T, Grishina I, McCoy J, Brent R (1996) Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 380:548–550

    Article  CAS  PubMed  Google Scholar 

  16. Nord K, Gunneriusson E, Ringdahl J, Ståhl S, Uhlén M, Nygren PA (1997) Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol 15:772–777

    Article  CAS  PubMed  Google Scholar 

  17. Norman C (1999) Genetic selection of peptide inhibitors of biological pathways. Science 285:591–595

    Article  CAS  PubMed  Google Scholar 

  18. Böttger A, Böttger V, Sparks A, Liu WL, Howard SF, Lane DP (1997) Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr Biol 7:860–869

    Article  PubMed  Google Scholar 

  19. Kamb A, Teng DH (2000) Transdominant genetics, peptide inhibitors and drug targets. Curr Opin Mol Ther 2:662–669

    CAS  PubMed  Google Scholar 

  20. Fletcher JM, Hughes RA (2009) Modified low molecular weight cyclic peptides as mimetics of BDNF with improved potency, proteolytic stability and transmembrane passage in vitro. Bioorg Med Chem 17:2695–2702

    Article  CAS  PubMed  Google Scholar 

  21. Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157:195–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A (1996) Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 271:18188–18193

    Article  CAS  PubMed  Google Scholar 

  23. D’Ursi AM, Giusti L, Albrizio S, Porchia F, Esposito C, Caliendo G et al (2006) A membrane-permeable peptide containing the last 21 residues of the G alpha(s) carboxyl terminus inhibits G(s)-coupled receptor signaling in intact cells: correlations between peptide structure and biological activity. Mol Pharmacol 69:727–736

    PubMed  Google Scholar 

  24. Chatterjee J, Laufer B, Kessler H (2012) Synthesis of N-methylated cyclic peptides. Nat Protoc 7:432–444

    Article  CAS  PubMed  Google Scholar 

  25. Saether O, Craik DJ, Campbell ID, Sletten K, Juul J, Norman DG (1995) Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 34:4147–4158

    Article  CAS  PubMed  Google Scholar 

  26. Trabi M, Craik DJ (2002) Circular proteins: no end in sight. Trends Biochem Sci 27:132–138

    Article  CAS  PubMed  Google Scholar 

  27. Cheng YQ, Walton JD (2000) A eukaryotic alanine racemase gene involved in cyclic peptide biosynthesis. J Biol Chem 275:4906–4911

    Article  CAS  PubMed  Google Scholar 

  28. Jennings C, West J, Waine C, Craik D, Anderson M (2001) Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proc Natl Acad Sci U S A 98:10614–10619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ et al (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 286:498–502

    Article  CAS  PubMed  Google Scholar 

  30. Venkataraman N, Cole AL, Ruchala P, Waring AJ, Lehrer RI, Stuchlik O et al (2009) Reawakening retrocyclins: ancestral human defensins active against HIV-1. PLoS Biol 7:e95

    Article  PubMed  Google Scholar 

  31. Lawen A, Zocher R (1990) Cyclosporin synthetase. The most complex peptide synthesizing multienzyme polypeptide so far described. J Biol Chem 265:11355–11360

    CAS  PubMed  Google Scholar 

  32. Medina RA, Goeger DE, Hills P, Mooberry SL, Huang N, Romero LI et al (2008) Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp. J Am Chem Soc 130:6324–6325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Doi M, Ishida T, Kobayashi M, Katsuya Y, Mezaki Y, Sasaki M et al (2000) Amphipathic structure of theonellapeptolide-Id, a hydrophobic tridecapeptide lactone from the Okinawa marine sponge Theonella swinhoei. Biopolymers 54:27–34

    Article  CAS  PubMed  Google Scholar 

  34. Yongye AB, Li Y, Giulianotti MA, Yu Y, Houghten RA, Martínez-Mayorga K (2009) Modeling of peptides containing D-amino acids: implications on cyclization. J Comput Aided Mol Des 23:677–689

    Article  CAS  PubMed  Google Scholar 

  35. Thévenet P, Shen Y, Maupetit J, Guyon F, Derreumaux P, Tufféry P (2012) PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res 40:W288–W293

    Article  PubMed Central  PubMed  Google Scholar 

  36. Vagner J, Qu H, Hruby VJ (2008) Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol 12:292–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hayouka Z, Hurevich M, Levin A, Benyamini H, Iosub A, Maes M et al (2010) Cyclic peptide inhibitors of HIV-1 integrase derived from the LEDGF/p75 protein. Bioorg Med Chem 18:8388–8395

    Article  CAS  PubMed  Google Scholar 

  38. Baldwin JJ (1996) Design, synthesis and use of binary encoded synthetic chemical libraries. Mol Divers 2:81–88

    Article  CAS  PubMed  Google Scholar 

  39. Edwards PJ, Morrell AI (2002) Solid-phase compound library synthesis in drug design and development. Curr Opin Drug Discov Devel 5:594–605

    CAS  PubMed  Google Scholar 

  40. Huwe CM (2006) Synthetic library design. Drug Discov Today 11:763–767

    Article  CAS  PubMed  Google Scholar 

  41. Tan DS (2005) Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nat Chem Biol 1:74–84

    Article  CAS  PubMed  Google Scholar 

  42. Webb TR (2005) Current directions in the evolution of compound libraries. Curr Opin Drug Discov Devel 8:303–308

    CAS  PubMed  Google Scholar 

  43. Escoubas P, Quinton L, Nicholson GM (2008) Venomics: unravelling the complexity of animal venoms with mass spectrometry. J Mass Spectrom 43:279–295

    Article  CAS  PubMed  Google Scholar 

  44. Maksimov MO, Pan SJ, James Link A (2012) Lasso peptides: structure, function, biosynthesis, and engineering. Nat Prod Rep 29:996–1006

    Article  CAS  PubMed  Google Scholar 

  45. Bowers AA, Bowers AA (2012) Biochemical and biosynthetic preparation of natural product-like cyclic peptide libraries. Med Chem Commun 3:905–915

    Article  CAS  Google Scholar 

  46. Scott CP, Abel-Santos E, Wall M, Wahnon DC, Benkovic SJ (1999) Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci U S A 96:13638–13643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Kinsella TM, Ohashi CT, Harder AG, Yam GC, Li W, Peelle B et al (2002) Retrovirally delivered random cyclic peptide libraries yield inhibitors of interleukin-4 signaling in human B cells. J Biol Chem 277:37512–37518

    Article  CAS  PubMed  Google Scholar 

  48. Nilsson LO, Louassini M, Abel-Santos E (2005) Using siclopps for the discovery of novel antimicrobial peptides and their targets. Protein Pept Lett 12:795–799

    Article  CAS  PubMed  Google Scholar 

  49. Cheng L, Naumann TA, Horswill AR, Hong SJ, Venters BJ, Tomsho JW et al (2007) Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease. Protein Sci 16:1535–1542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Naumann TA, Tavassoli A, Benkovic SJ (2008) Genetic selection of cyclic peptide Dam methyltransferase inhibitors. Chembiochem 9:194–197

    Article  CAS  PubMed  Google Scholar 

  51. Kritzer JA, Hamamichi S, McCaffery JM, Santagata S, Naumann TA, Caldwell KA et al (2009) Rapid selection of cyclic peptides that reduce alpha-synuclein toxicity in yeast and animal models. Nat Chem Biol 5:655–663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Horswill AR, Savinov SN, Benkovic SJ (2004) A systematic method for identifying small-molecule modulators of protein–protein interactions. Proc Natl Acad Sci U S A 101:15591–15596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Tavassoli A, Benkovic SJ (2005) Genetically selected cyclic-peptide inhibitors of AICAR transformylase homodimerization. Angew Chem Int Ed Engl 44:2760–2763

    Article  CAS  PubMed  Google Scholar 

  54. Tavassoli A, Lu Q, Gam J, Pan H, Benkovic SJ, Cohen SN (2008) Inhibition of HIV budding by a genetically selected cyclic peptide targeting the Gag-TSG101 interaction. ACS Chem Biol 3:757–764

    Article  CAS  PubMed  Google Scholar 

  55. Barreto K, Bharathikumar VM, Ricardo A, DeCoteau JF, Luo Y, Geyer CR (2009) A genetic screen for isolating “lariat” peptide inhibitors of protein function. Chem Biol 16:1148–1157

    Article  CAS  PubMed  Google Scholar 

  56. Sondek J, Shortle D (1992) A general strategy for random insertion and substitution mutagenesis: substoichiometric coupling of trinucleotide phosphoramidites. Proc Natl Acad Sci U S A 89:3581–3585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Kayushin AL, Korosteleva MD, Miroshnikov AI, Kosch W, Zubov D, Piel N (1996) A convenient approach to the synthesis of trinucleotide phosphoramidites-synthons for the generation of oligonucleotide/peptide libraries. Nucleic Acids Res 24:3748–3755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Gaytán P, Yañez J, Sánchez F, Mackie H, Soberón X (1998) Combination of DMT-mononucleotide and Fmoc-trinucleotide phosphoramidites in oligonucleotide synthesis affords an automatable codon-level mutagenesis method. Chem Biol 5:519–527

    Article  PubMed  Google Scholar 

  59. Yagodkin A, Azhayev A, Roivainen J, Antopolsky M, Kayushin A, Korosteleva M et al (2007) Improved synthesis of trinucleotide phosphoramidites and generation of randomized oligonucleotide libraries. Nucleosides Nucleotides Nucleic Acids 26:473–497

    Article  CAS  PubMed  Google Scholar 

  60. Mauriala T, Auriola S, Azhayev A, Kayushin A, Korosteleva M, Miroshnikov A (2004) HPLC electrospray mass spectrometric characterization of trimeric building blocks for oligonucleotide synthesis. J Pharm Biomed Anal 34:199–206

    Article  CAS  PubMed  Google Scholar 

  61. Geyer CR, Bharathikumar VM, Barreto K, Decoteau JF (2013) Allosteric lariat Peptide inhibitors of abl kinase. Chembiochem 14(16):2119–2125

    Google Scholar 

  62. Barreto K, Aparicio A, Bharathikumar VM, Decoteau JF, Geyer CR (2012) Yeast two-hybrid screening of cyclic peptide libraries using a combination of random and PI-deconvolution pooling strategies. Protein Eng Des Sel 9:453–464

    Article  Google Scholar 

  63. Ma H, Kunes S, Schatz PJ, Botstein D (1987) Plasmid construction by homologous recombination in yeast. Gene 58:201–216

    Article  CAS  PubMed  Google Scholar 

  64. Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340:245–246

    Article  CAS  PubMed  Google Scholar 

  65. Finley RL, Brent R (1994) Interaction mating reveals binary and ternary connections between Drosophila cell cycle regulators. Proc Natl Acad Sci U S A 91:12980–12984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Golemis EA, Serebriiskii I, Finley RL, Kolonin MG, Gyuris J, Brent R (2009) Interaction trap/two-hybrid system to identify interacting proteins. Curr Protoc Protein Sci. Chapter 19:Unit 19.2

    Google Scholar 

  67. Gyuris J, Golemis E, Chertkov H, Brent R (1993) Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75:791–803

    Article  CAS  PubMed  Google Scholar 

  68. Serebriiskii IG, Golemis EA (2001) Two-hybrid system and false positives. Approaches to detection and elimination. Methods Mol Biol 177:123–134

    CAS  PubMed  Google Scholar 

  69. Vidalain PO, Boxem M, Ge H, Li S, Vidal M (2004) Increasing specificity in high-throughput yeast two-hybrid experiments. Methods 32:363–370

    Article  CAS  PubMed  Google Scholar 

  70. Bickle MB, Dusserre E, Moncorgé O, Bottin H, Colas P (2006) Selection and characterization of large collections of peptide aptamers through optimized yeast two-hybrid procedures. Nat Protoc 1:1066–1091

    Article  CAS  PubMed  Google Scholar 

  71. Dong X, Stothard P, Forsythe IJ, Wishart DS (2004) PlasMapper: a web server for drawing and auto-annotating plasmid maps. Nucleic Acids Res 32(Web Server issue):W660–W664

    Google Scholar 

  72. Richardson SM, Nunley PW, Yarrington RM, Boeke JD, Bader JS (2010) GeneDesign 3.0 is an updated synthetic biology toolkit. Nucleic Acids Res 38:2603–2606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272

    Article  CAS  PubMed  Google Scholar 

  74. Seidman CE, Struhl K, Sheen J, Jessen T (2001) Introduction of plasmid DNA into cells. Curr Protoc Mol Biol. Chapter 1:Unit 1.8

    Google Scholar 

  75. Benatuil L, Perez JM, Belk J, Hsieh CM (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23:155–159

    Article  CAS  PubMed  Google Scholar 

  76. Gietz RD, Schiestl RH (2007) Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:38–41

    Article  CAS  PubMed  Google Scholar 

  77. Gietz RD, Schiestl RH (2007) Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:1–4

    Article  CAS  PubMed  Google Scholar 

  78. Gietz RD, Schiestl RH (2007) Microtiter plate transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:5–8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ronald Geyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Barreto, K., Geyer, C.R. (2014). Screening Combinatorial Libraries of Cyclic Peptides Using the Yeast Two-Hybrid Assay. In: Xiao, W. (eds) Yeast Protocols. Methods in Molecular Biology, vol 1163. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0799-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0799-1_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0798-4

  • Online ISBN: 978-1-4939-0799-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics