Skip to main content

Ligand Engineering Using Yeast Surface Display

  • Protocol
  • First Online:
Yeast Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1163))

Abstract

The genotype–phenotype linkage provided by display technologies enables efficient synthesis, analysis, and selection of combinatorial protein libraries. This approach tremendously expands the protein sequence space that can be efficiently evaluated for a selectable function. It thereby provides a key element in identification and directed evolution of novel or improved protein function. Here, yeast surface display is described in the context of selection for binding function. Yeast culture and multiple approaches to magnetic- and fluorescence-based protein selection are presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  PubMed  Google Scholar 

  2. Sidhu SS, Lowman HB, Cunningham BC, Wells JA (2000) Phage display for selection of novel binding peptides. Methods Enzymol 328:333–363

    Article  CAS  PubMed  Google Scholar 

  3. Roberts RW, Szostak JW (1997) RNA–peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 94:12297–12302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Takahashi TT, Roberts RW (2009) In vitro selection of protein and peptide libraries using mRNA display. Methods Mol Biol 535:293–314

    Article  CAS  PubMed  Google Scholar 

  5. Mattheakis LC, Bhatt RR, Dower WJ (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci U S A 91:9022–9026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Plückthun A (2012) Ribosome display: a perspective. Methods Mol Biol 805:3–28

    Article  PubMed  Google Scholar 

  7. Yonezawa M, Doi N, Kawahashi Y, Higashinakagawa T, Yanagawa H (2003) DNA display for in vitro selection of diverse peptide libraries. Nucleic Acids Res 31:e118

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bessette PH, Rice JJ, Daugherty PS (2004) Rapid isolation of high-affinity protein binding peptides using bacterial display. Protein Eng Des Sel 17:731–739

    Article  CAS  PubMed  Google Scholar 

  9. Daugherty PS (2007) Protein engineering with bacterial display. Curr Opin Struct Biol 17:474–480

    Article  CAS  PubMed  Google Scholar 

  10. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    Article  CAS  PubMed  Google Scholar 

  11. Gai SA, Wittrup KD (2007) Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 17:467–473

    Article  CAS  PubMed  Google Scholar 

  12. Bowley DR, Labrijn AF, Zwick MB, Burton DR (2007) Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel 20:81–90

    Article  CAS  PubMed  Google Scholar 

  13. Swers JS, Kellogg BA, Wittrup KD (2004) Shuffled antibody libraries created by in vivo homologous recombination and yeast surface display. Nucleic Acids Res 32:e36

    Article  PubMed Central  PubMed  Google Scholar 

  14. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    Article  CAS  PubMed  Google Scholar 

  15. Benatuil L, Perez JM, Belk J, Hsieh C-M (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23:155–159

    Article  CAS  PubMed  Google Scholar 

  16. Hackel BJ, Ackerman ME, Howland SW, Wittrup KD (2010) Stability and CDR composition biases enrich binder functionality landscapes. J Mol Biol 401:84–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Feldhaus MJ, Siegel RW, Opresko LK et al (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21:163–170

    Article  CAS  PubMed  Google Scholar 

  18. Cochran JR, Kim Y-S, Lippow SM, Rao B, Wittrup KD (2006) Improved mutants from directed evolution are biased to orthologous substitutions. Protein Eng Des Sel 19:245–253

    Article  CAS  PubMed  Google Scholar 

  19. Kim Y-S, Bhandari R, Cochran JR, Kuriyan J, Wittrup KD (2006) Directed evolution of the epidermal growth factor receptor extracellular domain for expression in yeast. Proteins 62:1026–1035

    Article  CAS  PubMed  Google Scholar 

  20. Oliphant T, Engle M, Nybakken GE et al (2005) Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11:522–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Huang D, Shusta EV (2005) Secretion and surface display of green fluorescent protein using the yeast Saccharomyces cerevisiae. Biotechnol Prog 21:349–357

    Article  CAS  PubMed  Google Scholar 

  22. Moore SJ, Cochran JR (2012) Engineering knottins as novel binding agents. Methods Enzymol 503:223–251

    Article  CAS  PubMed  Google Scholar 

  23. Rao BM, Girvin AT, Ciardelli T, Lauffenburger DA, Wittrup KD (2003) Interleukin-2 mutants with enhanced alpha-receptor subunit binding affinity. Protein Eng 16:1081–1087

    Article  CAS  PubMed  Google Scholar 

  24. Ryu K, Lee EK (2002) Rapid colorimetric assay and yeast surface display for screening of highly functional fungal lignin peroxidase. J Chem Eng Jpn 35:527–532

    Article  CAS  Google Scholar 

  25. Sazinsky SL, Ott RG, Silver NW, Tidor B, Ravetch JV, Wittrup KD (2008) Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proc Natl Acad Sci U S A 105:20167–20172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Rakestraw JA, Aird D, Aha PM, Baynes BM, Lipovsek D (2011) Secretion-and-capture cell-surface display for selection of target-binding proteins. Protein Eng Des Sel 24:525–530

    Article  CAS  PubMed  Google Scholar 

  27. Feldhaus MJ, Siegel RW (2004) Yeast display of antibody fragments: a discovery and characterization platform. J Immunol Methods 290:69–80

    Article  CAS  PubMed  Google Scholar 

  28. Schreuder MP, Mooren AT, Toschka HY, Verrips CT, Klis FM (1996) Immobilizing proteins on the surface of yeast cells. Trends Biotechnol 14:115–120

    Article  CAS  PubMed  Google Scholar 

  29. Kim S-Y, Sohn J-H, Pyun Y-R, Choi E-S (2002) A cell surface display system using novel GPI-anchored proteins in Hansenula polymorpha. Yeast 19:1153–1163

    Article  CAS  PubMed  Google Scholar 

  30. Abe H, Shimma Y-I, Jigami Y (2003) In vitro oligosaccharide synthesis using intact yeast cells that display glycosyltransferases at the cell surface through cell wall-anchored protein Pir. Glycobiology 13:87–95

    Article  CAS  PubMed  Google Scholar 

  31. Tanino T, Fukuda H, Kondo A (2006) Construction of a Pichia pastoris cell-surface display system using Flo1p anchor system. Biotechnol Prog 22:989–993

    Article  CAS  PubMed  Google Scholar 

  32. Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci U S A 97:10701–10705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Holler PD, Holman PO, Shusta EV, O'Herrin S, Wittrup KD, Kranz DM (2000) In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc Natl Acad Sci U S A 97:5387–5392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Shusta EV, Kieke MC, Parke E, Kranz DM, Wittrup KD (1999) Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J Mol Biol 292:949–956

    Article  CAS  PubMed  Google Scholar 

  35. Piatesi A, Howland SW, Rakestraw JA et al (2006) Directed evolution for improved secretion of cancer-testis antigen NY-ESO-1 from yeast. Protein Expr Purif 48:232–242

    Article  CAS  PubMed  Google Scholar 

  36. Chen I, Dorr BM, Liu DR (2011) A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A 108:11399–11404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Antipov E, Cho AE, Wittrup KD, Klibanov AM (2008) Highly L and D enantioselective variants of horseradish peroxidase discovered by an ultrahigh-throughput selection method. Proc Natl Acad Sci U S A 105:17694–17699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Cochran JR, Kim Y-S, Olsen MJ, Bhandari R, Wittrup KD (2004) Domain-level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. J Immunol Methods 287:147–158

    Article  CAS  PubMed  Google Scholar 

  39. Chao G, Cochran JR, Wittrup KD (2004) Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol 342:539–550

    Article  CAS  PubMed  Google Scholar 

  40. Yeung YA, Wittrup KD (2002) Quantitative screening of yeast surface-displayed polypeptide libraries by magnetic bead capture. Biotechnol Prog 18:212–220

    Article  CAS  PubMed  Google Scholar 

  41. Ackerman M, Levary D, Tobon G, Hackel B, Orcutt KD, Wittrup KD (2009) Highly avid magnetic bead capture: an efficient selection method for de novo protein engineering utilizing yeast surface display. Biotechnol Prog 25:774–783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Wang XX, Shusta EV (2005) The use of scFv-displaying yeast in mammalian cell surface selections. J Immunol Methods 304:30–42

    Article  CAS  PubMed  Google Scholar 

  43. Wang XX, Cho YK, Shusta EV (2007) Mining a yeast library for brain endothelial cell-binding antibodies. Nat Methods 4:143–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Richman SA, Healan SJ, Weber KS et al (2006) Development of a novel strategy for engineering high-affinity proteins by yeast display. Protein Eng Des Sel 19:255–264

    Article  CAS  PubMed  Google Scholar 

  45. Pepper LR, Cho YK, Boder ET, Shusta EV (2008) A decade of yeast surface display technology: where are we now? Comb Chem High Throughput Screen 11:127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Hackel BJ, Wittrup KD (2008) Yeast surface display in protein engineering and analysis. In: Lutz S, Bornscheuer UT (eds) Protein engineering handbook. Wiley, New York, pp 621–648

    Google Scholar 

  47. Boder ET, Raeeszadeh-Sarmazdeh M, Price JV (2012) Engineering antibodies by yeast display. Arch Biochem Biophys 526:99–106

    Article  CAS  PubMed  Google Scholar 

  48. Van Antwerp JJ, Wittrup KD (2000) Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnol Prog 16:31–37

    Article  Google Scholar 

  49. Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–768

    Article  CAS  PubMed  Google Scholar 

  50. Boder ET, Wittrup KD (1998) Optimal screening of surface-displayed polypeptide libraries. Biotechnol Prog 14:55–62

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The preparation of this manuscript was supported by the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Hackel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hackel, B.J. (2014). Ligand Engineering Using Yeast Surface Display. In: Xiao, W. (eds) Yeast Protocols. Methods in Molecular Biology, vol 1163. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0799-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0799-1_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0798-4

  • Online ISBN: 978-1-4939-0799-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics