Skip to main content

The Use of Fluorescence Resonance Energy Transfer (FRET) to Measure Axon Growth and Guidance-Related Intracellular Signalling in Live Dorsal Root Ganglia Neuronal Growth Cones

  • Protocol
  • First Online:
Axon Growth and Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1162))

Abstract

The measurement of signalling by traditional methods in primary neuronal cultures is often limited by cell numbers within the culture and restricted division among these cells. Further limitations are seen with modern fluorescent imaging techniques on account of difficulties with transfection of these cell types. Here, we describe successful transfection of dorsal root ganglion (DRG) primary neuronal cultures with cDNA encoded fluorescence resonance energy transfer (FRET) probes for various signalling moieties, and subsequent measurement of FRET as an index of signalling within these cells. Furthermore, these measurements were made within live neuronal growth cones, which are thin, fragile, and dynamic structures central to axonal growth, repair, and regeneration. This provides novel, physiological insight into the signalling processes driving these axonal behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song H, Poo MM (1999) Signal transduction underlying growth cone responses to diffusible factors. Curr Opin Neurobiol 9:355–363

    Article  CAS  PubMed  Google Scholar 

  2. Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4:703–713

    Article  CAS  PubMed  Google Scholar 

  3. Shewan D, Dwivedy A, Anderson R, Holt CE (2002) Age related changes underlie switch in netrin-1 responsiveness as growth cones advance along the visual pathway. Nat Neurosci 5:955–962

    Article  CAS  PubMed  Google Scholar 

  4. Murray AJ, Tucker SJ, Shewan DA (2009) cAMP-dependent axon guidance is distinctly regulated by Epac and protein kinase A. J Neurosci 29:15434–15444

    Article  CAS  PubMed  Google Scholar 

  5. Peace AG, Shewan DA (2011) New perspectives in cyclic AMP-mediated axon growth and guidance: the emerging epoch of Epac. Brain Res Bull 84:280–288

    Article  CAS  PubMed  Google Scholar 

  6. Bos JL (2003) Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol 4:733–738

    Article  CAS  PubMed  Google Scholar 

  7. Murray AJ, Shewan DA (2008) Epac mediates cAMP-dependent axon growth, guidance and regeneration. Mol Cell Neurosci 38:578–588

    Article  CAS  PubMed  Google Scholar 

  8. Nagai Y, Miyazaki M, Aoki R, Zama T, Inouye S, Hirose K, Iino M, Hagiwara M (2000) A fluorescent indicator for visualising cAMP-induced phosphorylation in vivo. Nat Biotechnol 18:313–316

    Article  CAS  PubMed  Google Scholar 

  9. Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715

    Article  CAS  PubMed  Google Scholar 

  10. DiPilato LM, Cheng X, Zhang J (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signalling within discrete subcellular compartments. Proc Natl Acad Sci U S A 101: 16513–16518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lohse MJ, Bünemann M, Hoffman C, Vilardaga JP, Nikolaev VO (2007) Monitoring receptor signalling by intramolecular FRET. Curr Opin Pharmacol 7:547–553

    Article  CAS  PubMed  Google Scholar 

  12. van der Krogt GNM, Ogink J, Ponsioen B, Jalink K (2008) A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example. PLoS One 3:e1916. doi:10.1371/journal.pone.0001916

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5: 1176–1180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Terai K, Matsuda M (2006) The amino-terminal B-Raf-specific region mediates calcium-dependent homo- and hetero-dimerization of Raf. EMBO J 25:3556–3564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Shipman C Jr (1969) Evaluation of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) as a tissue culture buffer. Proc Soc Exp Biol Med 130:305–310

    Article  CAS  PubMed  Google Scholar 

  16. Wouters FS, Verveer PJ, Bastiaens PIH (2001) Imaging biochemistry inside cells. Trends Cell Biol 11:203–211

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Tucker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tucker, S.J. (2014). The Use of Fluorescence Resonance Energy Transfer (FRET) to Measure Axon Growth and Guidance-Related Intracellular Signalling in Live Dorsal Root Ganglia Neuronal Growth Cones. In: Murray, A. (eds) Axon Growth and Regeneration. Methods in Molecular Biology, vol 1162. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0777-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0777-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0776-2

  • Online ISBN: 978-1-4939-0777-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics