Skip to main content

Using Manganese-Enhanced MRI to Assess Optic Nerve Regeneration

  • Protocol
  • First Online:
Book cover Axon Growth and Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1162))

Abstract

Experimental visual pathway lesion in the form of optic nerve (ON) crush or transection injury results in massive death of retinal ganglion cells (RGCs) and permanent loss of synaptic connections (Berkelaar et al., J Neurosci 14:4368–4374, 1994). Despite the fact that RGC axon regeneration is inhibited in a manner typical of other CNS lesions, the rodent ON injury model is one of the few models where robust axon regeneration has been achieved after therapeutic intervention (Berry et al., Restor Neurol Neurosci 26:147–174, 2008). However, assessment of the efficacy of therapeutic approaches in promoting ON regeneration has traditionally relied on histological methods, which necessitate the sacrifice of experimental animals and thus preclude longitudinal in vivo monitoring of individual subjects. Manganese-enhanced MRI (MEMRI) utilizes the paramagnetic properties and uptake and transport mechanisms of manganese ions (Mn2+) by neurons, thus enabling serial in vivo monitoring of the entire axonal projections (Sandvig et al., J Magn Reson Imaging 34:670–675, 2011; Thuen et al., J Magn Reson Imaging 4:492–500, 2005; Pautler et al., Magn Res Med 50:33–39, 2003; Saleem et al., Neurotechnique 34:685–700, 2000). The above properties of Mn2+ render MEMRI a highly suitable technique for assessment of ON regeneration after injury, especially with a view to in vivo monitoring of neuronal connectivity and axon-regenerative responses to treatment. In this chapter, we provide a generic protocol for ON lesioning and MEMRI application for assessment of ON regeneration in rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harvey AR, Hu Y, Leaver SG et al (2006) Gene therapy and transplantation in CNS repair: the visual system. Prog Retin Eye Res 25:449–489

    Article  CAS  PubMed  Google Scholar 

  2. Plant GW, Harvey AR, Leaver SG et al (2011) Olfactory ensheathing glia: repairing injury to the mammalian visual system. Exp Neurol 229:99–108

    Article  PubMed  Google Scholar 

  3. Berry M, Ahmed Z, Lorber B et al (2008) Regeneration of axons in the visual system. Restor Neurol Neurosci 26:147–174

    PubMed  Google Scholar 

  4. Sandvig A, Sandvig I, Berry M et al (2011) Axonal tracing of the normal and regenerating visual pathway of mouse, rat, frog, and fish using manganese-enhanced magnetic resonance imaging (MEMRI). J Magn Reson Imaging 34: 670–675

    Article  PubMed  Google Scholar 

  5. Thuen M, Singstad TE, Pedersen TB et al (2005) Manganese-enhanced MRI of the optic visual pathway and optic nerve injury in adult rats. J Magn Reson Imaging 4:492–500

    Article  Google Scholar 

  6. Sandvig I, Thuen M, Hoang L et al (2012) In vivo MRI of olfactory ensheathing cell grafts and regenerating axons in transplant mediated repair of the adult rat optic nerve. NMR Biomed 26:620–631

    Article  Google Scholar 

  7. Bear MF, Connors BW, Paradiso MA (2006) The central nervous system. In: Neuroscience. Exploring the brain. 3rd. rev. ed. Lippincott Williams & Wilkjins, Baltimore

    Google Scholar 

  8. Lorber B, Berry M, Logan A (2008) Different factors promote regeneration of adult rat retinal ganglion cells after lens injury and intravitreal peripheral nerve grafting. J Neurosci Res 86:894–903

    Article  CAS  PubMed  Google Scholar 

  9. Zhi Y, Lu Q, Zhang CW et al (2005) Different optic nerve injury sites result in different responses of retinal ganglion cells to brain-derived neurotrophic factor but not neurotrophin-4/5. Brain Res 1047:224–232

    Article  CAS  PubMed  Google Scholar 

  10. Zeng BY, Anderson PN, Campbell G et al (1995) Regenerative and other responses to injury in the retinal stump of the optic nerve in adult albino rats: transection of the intracranial optic nerve. J Anat 189:495–508

    Google Scholar 

  11. Cho EY, So K-F (1993) Sprouting of axon-like processes from axotomised retinal ganglion cells is influenced by the distance of axotomy from the cell body and the mode of transplantation of the peripheral nerve. Restor Neurol Neurosci 6:29–34

    CAS  PubMed  Google Scholar 

  12. Bähr M (2000) Live or let die—retinal ganglion cell death and survival during development and in the lesioned adult CNS. Trends Neurosci 23:483–490

    Article  PubMed  Google Scholar 

  13. Isenmann S, Wahl C, Krajewski S et al (1997) Upregulation of Bax protein in degenerating retinal ganglion cells precedes apoptotic death after optic nerve lesion in the rat. Eur J Neurosci 9:1763–1772

    Article  CAS  PubMed  Google Scholar 

  14. Berry M (1982) Post-injury breakdown products inhibit axonal growth: an hypothesis to explain the failure of axonal regeneration in the mammalian central nervous system. Bibl Anat 23:1–11

    PubMed  Google Scholar 

  15. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Fawcett JW (2006) The glial response to injury and its role in the inhibition of CNS repair. Adv Exp Med Biol 557:11–24

    Article  CAS  PubMed  Google Scholar 

  17. Rhodes KE, Fawcett JW (2004) Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS? J Anat 204:33–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Benowitz LI, Yin Y (2007) Combinatorial treatments for promoting axon regeneration in the CNS: strategies for overcoming inhibitory signals and activating neurons’ intrinsic growth state. Dev Neurobiol 67:1148–1165

    Article  CAS  PubMed  Google Scholar 

  19. Logan A, Ahmed Z, Baird A et al (2006) Neurotrophic factor synergy is required for neuronal survival and disinhibited axon regeneration after CNS injury. Brain 129: 490–502

    Article  PubMed  Google Scholar 

  20. Berry M, Carlile A, Hunter A et al (1999) Optic nerve regeneration after intravitreal peripheral nerve implants: trajectories of axons regrowing through the optic chiasm into the optic tracts. J Neurocytol 28:721–741

    Article  CAS  PubMed  Google Scholar 

  21. Berry M, Carlile J, Hunter A (1996) Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J Neurocytol 25:147–170

    Article  CAS  PubMed  Google Scholar 

  22. So KF, Aguayo AJ (1985) Lengthy regrowth of cut axons from ganglion cells from peripheral nerve transplantation into the retina of adult rats. Brain Res 328:349–354

    Article  CAS  PubMed  Google Scholar 

  23. Aguayo AJ, David S, Bray GM (1981) Influences of the glial environment on the elongation of axons after injury; transplantation studies in adult rodents. J Exp Biol 95: 231–240

    CAS  PubMed  Google Scholar 

  24. David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system ‘bridges’ after central nervous system injury in adult rats. Science 214:931–933

    Article  CAS  PubMed  Google Scholar 

  25. Richardson PM, McGuinness UM, Aguayo AJ (1980) Axons from CNS neurons regenerate into PNS grafts. Nature 284:264–265

    Article  CAS  PubMed  Google Scholar 

  26. Ahmed Z, Aslam M, Lorber B et al (2010) Optic nerve and vitreal inflammation are both RGC neuroprotective but only the latter is RGC axogenic. Neurobiol Dis 37:441–454

    Article  CAS  PubMed  Google Scholar 

  27. Lorber B, Berry M, Logan A (2005) Lens injury stimulates adult mouse retinal ganglion cell axon regeneration via both macrophage- and lens-derived factors. Eur J Neurosci 21: 2029–2034

    Article  PubMed  Google Scholar 

  28. Fischer D, Heiduschka P, Thanos S (2001) Lens-injury stimulated axonal regeneration throughout the optic pathway of adult rats. Exp Neurol 172:257–272

    Article  CAS  PubMed  Google Scholar 

  29. Leon S, Yin Y, Nguyen J et al (2000) Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci 20:4615–4626

    CAS  PubMed  Google Scholar 

  30. Fischer D, Pavlidis M, Thanos S (2000) Cataractogenic lens injury prevents traumatic ganglion cell death and promotes axonal regeneration both in vivo and in culture. Invest Ophthalmol Vis Sci 41:3943–3954

    CAS  PubMed  Google Scholar 

  31. Park KK, Liu K, Hu Y et al (2010) PTEN/mTOR and axon regeneration. Exp Neurol 223:45–50

    Article  CAS  PubMed  Google Scholar 

  32. Kurimoto T, Yin Y, Omura K et al (2010) Long distance axon regeneration in the mature optic nerve: contributions of oncomodulin, cAMP, and pten gene deletion. J Neurosci 30: 15654–15663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Li Y, Sauvé Y, Li D et al (2003) Transplanted olfactory ensheathing cells promote regeneration of cut adult rat optic nerve axons. J Neurosci 23:7783–7788

    CAS  PubMed  Google Scholar 

  34. Li Y, Li D, Raisman G (2007) Transplanted Schwann cells, not olfactory ensheathing cells myelinate optic nerve axons. Glia 55:312–316

    Article  PubMed  Google Scholar 

  35. Wu MM, Fan DG, Tadmori I et al (2010) Death of axotomised retinal ganglion cells delayed after intraoptic nerve transplantation of olfactory ensheathing cells in adult rats. Cell Transplant 19:159–166

    Article  PubMed  Google Scholar 

  36. Liu Y, Gong Z, Liu L et al (2010) Combined effect of olfactory ensheathing cell (OEC) transplantation and glial cell line-derived neurotrophic factor (GDNF) intravitreal injection on optic nerve injury in rats. Mol Vis 16: 2903–2910

    PubMed Central  PubMed  Google Scholar 

  37. Thuen M, Olsen O, Berry M et al (2009) Combination of Mn(2+)-enhanced and diffusion tensor MR imaging gives complementary information about injury and regeneration in the adult rat optic nerve. J Magn Reson Imaging 1:39–51

    Article  Google Scholar 

  38. Thuen M, Berry M, Pedersen TB et al (2008) Manganese-enhanced MRI of the rat visual pathway: acute neural toxicity, contrast enhancement, axon resolution, axonal transport, and clearance of Mn(2+). J Magn Reson Imaging 4:855–865

    Article  Google Scholar 

  39. Sloot WN, Gramsbergen JP (1994) Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res 657:124–132

    Article  CAS  PubMed  Google Scholar 

  40. Pautler RG, Silva AC, Koretsky AP (1998) In vivo neuronal tract-tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Med 40:740–748

    Article  CAS  PubMed  Google Scholar 

  41. Narita K, Kawasaki F, Kita H (1990) Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Brain Res 510:289–295

    Article  CAS  PubMed  Google Scholar 

  42. Finley JW (1998) Manganese uptake and release by cultured human hepato-carcinoma (hep-G2) cells. Biol Trace Elem Res 64: 101–118

    Article  CAS  PubMed  Google Scholar 

  43. Olsen Ø, Kristoffersen A, Thuen M et al (2010) Manganese transport in the rat optic nerve evaluated with spatial and time-resolved magnetic resonance imaging. J Magn Reson Imaging 32:551–560

    Article  PubMed  Google Scholar 

  44. Goldstein LS, Yang Z (2000) Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Ann Rev Neurosci 23: 39–71

    Article  CAS  PubMed  Google Scholar 

  45. Pautler RG, Mongeau R, Jacobs RE (2003) In vivo trans-synaptic tract-tracing from the murine striatum and amygdala utilizing manganese-enhanced MRI (MEMRI). Magn Reson Med 50:33–39

    Article  PubMed  Google Scholar 

  46. Saleem KS, Pauls JM, Augath M et al (2002) Magnetic resonance imaging of neuronal connections in the macaque monkey. Neurotechnique 34:685–700

    CAS  Google Scholar 

  47. Watanabe T, Michaelis T, Frahm J (2001) Mapping retinal projections in the living rat using high resolution 3D gradient-echo MRI with Mn2+-induced contrast. Magn Reson Med 46:424–429

    Article  CAS  PubMed  Google Scholar 

  48. Liang XY, Cheung SW, Chan KC et al (2011) CNS regeneration after chronic injury using a self-assembled nanomaterial and MEMRI for real-time in vivo monitoring. Nanomedicine 7:351–359

    Article  CAS  PubMed  Google Scholar 

  49. Chan KC, Fu QL, Hui ES et al (2008) Evaluation of the retina and optic-nerve in a rat model of chronic glaucoma using in vivo manganese-enhanced magnetic resonance imaging. Neuroimage 40:1166–1174

    Article  PubMed  Google Scholar 

  50. Santamaria AB (2008) Manganese exposure, essentiality and toxicity. Indian J Med Res 128: 484–500

    CAS  PubMed  Google Scholar 

  51. Mørch YA, Sandvig I, Olsen O et al (2012) Mn-alginate gels as a novel system for controlled release of Mn2+ in manganese-enhanced MRI. Contrast Media Mol Imaging 7:265–275

    Article  PubMed  Google Scholar 

  52. Olsen Ø, Thuen M, Berry M et al (2008) Axon tracing in the adult rat optic nerve and tract after intravitreal injection of MnDPDP using a semiautomatic segmentation technique. J Magn Reson Imaging 27:34–42

    Article  PubMed  Google Scholar 

  53. Haug A, Larsen B, Smidsrød O (1996) A study of the construction of alginic acid by partial hydrolysis. Acta Chem Scand 20:183–190

    Article  Google Scholar 

  54. Mørch YA, Holtan S, Donati I et al (2008) Mechanical properties of C-5 epimerised alginates. Biomacromolecules 9:2360–2368

    Article  PubMed  Google Scholar 

  55. Mørch YA, Donati I, Strand BL et al (2005) Molecular engineering as an approach to design new functional properties of alginate. Biomacromolecules 8:2809–2814

    Article  Google Scholar 

  56. Donati I, Holtan S, Mørch YA et al (2005) New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromolecules 6:1031–1040

    Article  CAS  PubMed  Google Scholar 

  57. Strand BL, Mørch YA, Syvertsen KR et al (2003) Microcapsules made by enzymatically tailored alginate. J Biomed Mater Res A 64: 540–550

    Article  PubMed  Google Scholar 

  58. King A, Strand BL, Rokstad AM et al (2003) Improvement of the biocompatibility of alginate/poly-L-lysine/alginate microcapsules by the use of epimerised alginate as a coating. J Biomed Mater Res A 64:533–539

    Article  PubMed  Google Scholar 

  59. Mørch YA, Donati I, Strand BL et al (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7: 1471–1480

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A number of people have made valuable contributions towards the protocols and techniques described in this chapter. The authors are grateful to Professor Martin Berry for expert training and advice in establishing the surgical protocols; Dr Christian Brekken, Dr Marte Thuen, and Professor Olav Haraldseth for their expertise in MRI; Dr Øystein Olsen for mathematical modeling; Dr Yrr Mørch and Professor Gudmund Skjåk-Bræk for the Mn2+-alginate microbeads; and Mrs Tina Bugge Pedersen for technical assistance. This work was supported by the Norwegian Research Council, Centre for Research-Based Innovation, Medical Imaging Laboratory (MI Lab), NTNU, Norway, and Functional Genomics (FUGE), Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioanna Sandvig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sandvig, I., Sandvig, A. (2014). Using Manganese-Enhanced MRI to Assess Optic Nerve Regeneration. In: Murray, A. (eds) Axon Growth and Regeneration. Methods in Molecular Biology, vol 1162. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0777-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0777-9_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0776-2

  • Online ISBN: 978-1-4939-0777-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics