Skip to main content

Noninvasive Neural Imaging and Tissue Oxygenation in the Visual System

  • Protocol
  • First Online:
Neurovascular Coupling Methods

Part of the book series: Neuromethods ((NM,volume 88))

  • 959 Accesses

Abstract

Noninvasive functional magnetic resonance imaging (fMRI) has become a primary tool for the measurement of behavior-related neural activity in the human brain. However, the blood oxygen level-dependent (BOLD) signal used in fMRI does not directly measure neural activity. It measures hemodynamic local changes in deoxygenated hemoglobin. To understand the functional significance of these changes, local tissue oxygen concentration may be measured as a way of studying dynamic oxygenation in the brain. Here, we use a dual-purpose sensor to simultaneously measure changes in tissue oxygenation and neural activity in the central visual pathway. We find that this technique can be used reliably in an in vivo section of a functioning visual system. Based on a series of experiments, we have attempted to answer the following questions. First, are there two major components, a small initial dip and a large positive peak, in tissue oxygen response as shown in fMRI and optical imaging studies? If there are two components, is one better coupled with neural activity? If the initial dip in tissue oxygenation is found, we wish to determine if it is unreliable as is the case in fMRI. Second, is tissue oxygen response coupled linearly with neural activity for temporal, spatial, and scaling domains? Third, can neurometabolic coupling be modified by activation of intracortical inhibitory networks? Finally, extracellular neural recordings may be specified in three major categories: single cell, multiple unit activity (MUA), and local field potential (LFP). Is tissue oxygen response better coupled with LFP than the other categories, as shown for fMRI BOLD signals? Our data provide direct evidence regarding the questions above. Results on tissue oxygenation and neurometabolic coupling may be applied to questions concerning human brain mapping with fMRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769

    Article  CAS  PubMed  Google Scholar 

  2. Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357(1424):1003–1037

    Article  PubMed Central  PubMed  Google Scholar 

  3. Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A 83(4):1140–1144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Fox PT, Raichle ME, Mintun MA et al (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241(4864):462–464

    Article  CAS  PubMed  Google Scholar 

  5. Davis TL, Kwong KK, Weisskoff RM et al (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A 95(4):1834–1839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hoge RD, Atkinson J, Gill B et al (1999) Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci U S A 96(16):9403–9408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kim SG, Rostrup E, Larsson HB et al (1999) Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation. Magn Reson Med 41(6):1152–1161

    Article  CAS  PubMed  Google Scholar 

  8. Roland PE, Eriksson L, Stone-Elander S et al (1987) Does mental activity change the oxidative metabolism of the brain? J Neurosci 7(8):2373–2389

    CAS  PubMed  Google Scholar 

  9. Wey HY, Wang DJ, Duong TQ (2011) Baseline CBF, and BOLD, CBF, and CMRO2 fMRI of visual and vibrotactile stimulations in baboons. J Cereb Blood Flow Metab 31(2):715–724

    Article  PubMed Central  PubMed  Google Scholar 

  10. Frostig RD, Lieke EE, Ts’o DY et al (1990) Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci U S A 87(16):6082–6086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272(5261):551–554

    Article  CAS  PubMed  Google Scholar 

  12. Kim SG, Richter W, Ugurbil K (1997) Limitations of temporal resolution in functional MRI. Magn Reson Med 37(4):631–636

    Article  CAS  PubMed  Google Scholar 

  13. Menon RS, Kim SG (1999) Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends Cogn Sci 3(6):207–216

    Article  PubMed  Google Scholar 

  14. Buxton RB (2001) The elusive initial dip. Neuroimage 13(6 Pt 1):953–958

    Article  CAS  PubMed  Google Scholar 

  15. Hathout GM, Varjavand B, Gopi RK (1999) The early response in fMRI: a modeling approach. Magn Reson Med 41(3):550–554

    Article  CAS  PubMed  Google Scholar 

  16. Clark LC Jr, Wolf R, Granger D et al (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6(3):189–193

    CAS  PubMed  Google Scholar 

  17. Clark LC Jr, Misrahy G, Fox RP (1958) Chronically implanted polarographic electrodes. J Appl Physiol 13(1):85–91

    CAS  PubMed  Google Scholar 

  18. Travis RP Jr, Clark LC Jr (1965) Changes in evoked brain oxygen during sensory stimulation and conditioning. Electroencephalogr Clin Neurophysiol 19(5):484–491

    Article  PubMed  Google Scholar 

  19. Ances BM, Wilson DF, Greenberg JH et al (2001) Dynamic changes in cerebral blood flow, O2 tension, and calculated cerebral metabolic rate of O2 during functional activation using oxygen phosphorescence quenching. J Cereb Blood Flow Metab 21(5):511–516

    Article  CAS  PubMed  Google Scholar 

  20. Enager P, Piilgaard H, Offenhauser N et al (2009) Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex. J Cereb Blood Flow Metab 29(5):976–986

    Article  CAS  PubMed  Google Scholar 

  21. Li B, Freeman RD (2007) High-resolution neurometabolic coupling in the lateral geniculate nucleus. J Neurosci 27(38):10223–10229

    Article  CAS  PubMed  Google Scholar 

  22. Li B, Freeman RD (2010) Neurometabolic coupling in the lateral geniculate nucleus changes with extended age. J Neurophysiol 104(1):414–425

    Article  PubMed Central  PubMed  Google Scholar 

  23. Li B, Freeman RD (2011) Neurometabolic coupling differs for suppression within and beyond the classical receptive field in visual cortex. J Physiol 589(Pt 13):3175–3190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Li B, Freeman RD (2012) Spatial summation of neurometabolic coupling in the central visual pathway. Neuroscience 213:112–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Offenhauser N, Thomsen K, Caesar K et al (2005) Activity-induced tissue oxygenation changes in rat cerebellar cortex: interplay of postsynaptic activation and blood flow. J Physiol 565(Pt 1):279–294, Epub 2005 Mar 17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Thompson JK, Peterson MR, Freeman RD (2003) Single-neuron activity and tissue oxygenation in the cerebral cortex. Science 299(5609):1070–1072

    Article  CAS  PubMed  Google Scholar 

  27. Thompson JK, Peterson MR, Freeman RD (2004) High-resolution neurometabolic coupling revealed by focal activation of visual neurons. Nat Neurosci 7(9):919–920

    Article  CAS  PubMed  Google Scholar 

  28. Thompson JK, Peterson MR, Freeman RD (2005) Separate spatial scales determine neural activity-dependent changes in tissue oxygen within central visual pathways. J Neurosci 25(39):9046–9058

    Article  CAS  PubMed  Google Scholar 

  29. Viswanathan A, Freeman RD (2007) Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat Neurosci 10(10):1308–1312, Epub 2007 Sep 9

    Article  CAS  PubMed  Google Scholar 

  30. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Kim DS, Duong TQ, Kim SG (2000) High-resolution mapping of iso-orientation columns by fMRI. Nat Neurosci 3(2):164–169

    Article  CAS  PubMed  Google Scholar 

  32. Yacoub E, Shmuel A, Pfeuffer J et al (2001) Investigation of the initial dip in fMRI at 7 Tesla. NMR Biomed 14(7–8):408–412

    Article  CAS  PubMed  Google Scholar 

  33. Sanderson KJ (1971) The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. J Comp Neurol 143(1):101–108

    Article  CAS  PubMed  Google Scholar 

  34. Duong TQ, Kim DS, Ugurbil K et al (2000) Spatiotemporal dynamics of the BOLD fMRI signals: toward mapping submillimeter cortical columns using the early negative response. Magn Reson Med 44(2):231–242

    Article  CAS  PubMed  Google Scholar 

  35. Boynton GM, Engel SA, Glover GH et al (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16(13):4207–4221

    CAS  PubMed  Google Scholar 

  36. Friston KJ, Jezzard P, Turner R (1994) Analysis of functional MRI time-series. Hum Brain Mapp 1:153–171

    Article  Google Scholar 

  37. Birn RM, Saad ZS, Bandettini PA (2001) Spatial heterogeneity of the nonlinear dynamics in the FMRI BOLD response. Neuroimage 14(4):817–826

    Article  CAS  PubMed  Google Scholar 

  38. Gu H, Stein EA, Yang Y (2005) Nonlinear responses of cerebral blood volume, blood flow and blood oxygenation signals during visual stimulation. Magn Reson Imaging 23(9):921–928, Epub 2005 Nov 3

    Article  PubMed  Google Scholar 

  39. Liu H, Gao J (2000) An investigation of the impulse functions for the nonlinear BOLD response in functional MRI. Magn Reson Imaging 18(8):931–938

    Article  CAS  PubMed  Google Scholar 

  40. Miller KL, Luh WM, Liu TT et al (2001) Nonlinear temporal dynamics of the cerebral blood flow response. Hum Brain Mapp 13(1):1–12

    Article  CAS  PubMed  Google Scholar 

  41. Soltysik DA, Peck KK, White KD et al (2004) Comparison of hemodynamic response nonlinearity across primary cortical areas. Neuroimage 22(3):1117–1127

    Article  PubMed  Google Scholar 

  42. Vazquez AL, Noll DC (1998) Nonlinear aspects of the BOLD response in functional MRI. Neuroimage 7(2):108–118

    Article  CAS  PubMed  Google Scholar 

  43. Freeman RD, Ohzawa I, Walker G (2001) Beyond the classical receptive field in the visual cortex. Prog Brain Res 134:157–170

    Article  CAS  PubMed  Google Scholar 

  44. Nurminen L, Kilpelainen M, Laurinen P et al (2009) Area summation in human visual system: psychophysics, fMRI, and modeling. J Neurophysiol 102(5):2900–2909

    Article  PubMed  Google Scholar 

  45. Press WA, Brewer AA, Dougherty RF et al (2001) Visual areas and spatial summation in human visual cortex. Vision Res 41(10–11):1321–1332

    Article  CAS  PubMed  Google Scholar 

  46. Williams AL, Singh KD, Smith AT (2003) Surround modulation measured with functional MRI in the human visual cortex. J Neurophysiol 89(1):525–533

    Article  PubMed  Google Scholar 

  47. Zenger-Landolt B, Heeger DJ (2003) Response suppression in v1 agrees with psychophysics of surround masking. J Neurosci 23(17):6884–6893

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Devor A, Dunn AK, Andermann ML et al (2003) Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron 39(2):353–359

    Article  CAS  PubMed  Google Scholar 

  49. Sheth SA, Nemoto M, Guiou M et al (2004) Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron 42(2):347–355

    Article  CAS  PubMed  Google Scholar 

  50. Cauli B, Tong XK, Rancillac A et al (2004) Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci 24(41):8940–8949

    Article  CAS  PubMed  Google Scholar 

  51. Kocharyan A, Fernandes P, Tong XK et al (2008) Specific subtypes of cortical GABA interneurons contribute to the neurovascular coupling response to basal forebrain stimulation. J Cereb Blood Flow Metab 28(2):221–231

    Article  CAS  PubMed  Google Scholar 

  52. Lee JH, Durand R, Gradinaru V et al (2010) Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465(7299):788–792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Freeman TC, Durand S, Kiper DC et al (2002) Suppression without inhibition in visual cortex. Neuron 35(4):759–771

    Article  CAS  PubMed  Google Scholar 

  54. Li B, Peterson MR, Thompson JK et al (2005) Cross-orientation suppression: monoptic and dichoptic mechanisms are different. J Neurophysiol 94(2):1645–1650

    Article  PubMed  Google Scholar 

  55. Sengpiel F, Vorobyov V (2005) Intracortical origins of interocular suppression in the visual cortex. J Neurosci 25(27):6394–6400

    Article  CAS  PubMed  Google Scholar 

  56. DeAngelis GC, Freeman RD, Ohzawa I (1994) Length and width tuning of neurons in the cat’s primary visual cortex. J Neurophysiol 71(1):347–374

    CAS  PubMed  Google Scholar 

  57. Durand S, Freeman TC, Carandini M (2007) Temporal properties of surround suppression in cat primary visual cortex. Vis Neurosci 24(5):679–690

    PubMed  Google Scholar 

  58. Li B, Thompson JK, Duong T et al (2006) Origins of cross-orientation suppression in the visual cortex. J Neurophysiol 96(4):1755–1764, Epub 2006 Jul 19

    Article  PubMed  Google Scholar 

  59. Priebe NJ, Ferster D (2006) Mechanisms underlying cross-orientation suppression in cat visual cortex. Nat Neurosci 9(4):552–561, Epub 2006 Mar 5

    Article  CAS  PubMed  Google Scholar 

  60. Heeger DJ, Huk AC, Geisler WS et al (2000) Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? Nat Neurosci 3(7):631–633

    Article  CAS  PubMed  Google Scholar 

  61. Ress D, Backus BT, Heeger DJ (2000) Activity in primary visual cortex predicts performance in a visual detection task. Nat Neurosci 3(9):940–945

    Article  CAS  PubMed  Google Scholar 

  62. Mukamel R, Gelbard H, Arieli A et al (2005) Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309(5736):951–954

    Article  CAS  PubMed  Google Scholar 

  63. Logothetis NK, Pauls J, Augath M et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    Article  CAS  PubMed  Google Scholar 

  64. Jueptner M, Weiller C (1995) Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2(2):148–156

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph D. Freeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Li, B., Freeman, R.D. (2014). Noninvasive Neural Imaging and Tissue Oxygenation in the Visual System. In: Zhao, M., Ma, H., Schwartz, T. (eds) Neurovascular Coupling Methods. Neuromethods, vol 88. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0724-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0724-3_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0723-6

  • Online ISBN: 978-1-4939-0724-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics