Skip to main content

Neurovascular Coupling Investigated by Simultaneous Optical Coherence Tomography and Electrophysiology

  • Protocol
  • First Online:
Neurovascular Coupling Methods

Part of the book series: Neuromethods ((NM,volume 88))

  • 977 Accesses

Abstract

A comprehensive understanding of the neurovascular coupling relationship requires the simultaneous measurement of neuronal and vascular responses and the capability to probe all layers of the cerebral cortex. Current macroscopic imaging techniques like laser Doppler imaging, diffuse optical tomography, fMRI, and PET lack spatial resolution. While two-photon microscopy is widely used in imaging the brain, it suffers from a lack of depth penetration and imaging speed. Optical coherence tomography (OCT) provides a platform for imaging the brain that potentially overcomes all of the above disadvantages, providing high-resolution cross-sectional images of light backscattered from cortical tissue. Here, we outline the experimental methods involved in simultaneous OCT (hemodynamic) and electrophysiological (neuronal) measurements to investigate neurovascular coupling in the rat somatosensory cortex. Using a spectral/Fourier domain OCT system, changes in cerebral blood flow and scattering were measured from multiple cortical layers. Simultaneous neuronal responses from layer IV using a tungsten microelectrode and surface potentials from a fire-polished ball electrode were also measured. This chapter provides details on animal preparation, instrumental setup, and data acquisition methods, and, finally, discusses potential limitations and pitfalls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy S, Sherrington S (1890) On the regulation of the blood-supply of the brain. J Physiol 11:85–108

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Logothetis NK et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  PubMed  Google Scholar 

  3. Fabricius M, Lauritzen M (1996) Laser-Doppler evaluation of rat brain microcirculation: comparison with the [14C]-iodoantipyrine method suggests discordance during cerebral blood flow increases. J Cereb Blood Flow Metab 16:156–161

    Article  CAS  PubMed  Google Scholar 

  4. Dirnagl U et al (1989) Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model. J Cereb Blood Flow Metab 9:589–596

    Article  CAS  PubMed  Google Scholar 

  5. Boas DA, Dunn AK (2010) Laser speckle contrast imaging in biomedical optics. J Biomed Opt 15:011109

    Article  PubMed Central  PubMed  Google Scholar 

  6. Franceschini MA et al (2010) The effect of different anesthetics on neurovascular coupling. Neuroimage 51:1367–1377

    Article  PubMed Central  PubMed  Google Scholar 

  7. Culver JP et al (2003) Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia. J Cereb Blood Flow Metab 23:911–924

    Article  PubMed  Google Scholar 

  8. Martin C et al (2013) Complex spatiotemporal haemodynamic response following sensory stimulation in the awake rat. Neuroimage 66:1–8

    Article  PubMed Central  Google Scholar 

  9. Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551–554

    Article  CAS  PubMed  Google Scholar 

  10. Shih AY et al (2012) Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab 32:1277–1309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Huang D et al (1991) Optical coherence tomography. Science 254:1178–1181

    Article  CAS  PubMed  Google Scholar 

  12. Leitgeb R, Hitzenberger CK, Fercher AF (2003) Performance of Fourier domain vs. time domain optical coherence tomography. Opt Express 11:889–894

    Article  CAS  PubMed  Google Scholar 

  13. de Boer JF et al (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28:2067–2069

    Article  PubMed  Google Scholar 

  14. Choma MA et al (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11:2183–2189

    Article  PubMed  Google Scholar 

  15. Chen Z et al (1997) Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt Lett 22:64–66

    Article  CAS  PubMed  Google Scholar 

  16. Srinivasan VJ et al (2010) Quantitative cerebral blood flow with optical coherence tomography. Opt Express 18:2477–2494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Eccles JC (1951) Interpretation of action potentials evoked in the cerebral cortex. Electroencephalogr Clin Neurophysiol 3:449–464

    Article  CAS  PubMed  Google Scholar 

  18. Mitzdorf U (1987) Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cortex. Int J Neurosci 33:33–59

    Article  CAS  PubMed  Google Scholar 

  19. Srinivasan VJ et al (2010) Rapid volumetric angiography of cortical microvasculature with optical coherence tomography. Opt Lett 35: 43–45

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ulbert I et al (2001) Multiple microelectrode-recording system for human intracortical applications. J Neurosci Methods 106:69–79

    Article  CAS  PubMed  Google Scholar 

  21. Austin VC et al (2005) Confounding effects of anesthesia on functional activation in rodent brain: a study of halothane and alpha-chloralose anesthesia. Neuroimage 24:92–100

    Article  CAS  PubMed  Google Scholar 

  22. Nakao Y et al (2001) Effects of anesthesia on functional activation of cerebral blood flow and metabolism. Proc Natl Acad Sci U S A 98:7593–7598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Eger EI II (1984) The pharmacology of isoflurane. Br J Anaesth 56:71S–99S

    CAS  PubMed  Google Scholar 

  24. Kochs E, Bischoff P (1994) Ketamine and evoked potentials. Anaesthesist 43:S8–S14

    CAS  PubMed  Google Scholar 

  25. Crosby G, Crane AM, Sokoloff L (1982) Local changes in cerebral glucose utilization during ketamine anesthesia. Anesthesiology 56:437–443

    Article  CAS  PubMed  Google Scholar 

  26. Lei H et al (2001) The effects of ketamine–xylazine anesthesia on cerebral blood flow and oxygenation observed using nuclear magnetic resonance perfusion imaging and electron paramagnetic resonance oximetry. Brain Res 913:174–179

    Article  CAS  PubMed  Google Scholar 

  27. Di S, Barth DS (1991) Topographic analysis of field potentials in rat vibrissa/barrel cortex. Brain Res 546:106–112

    Article  CAS  PubMed  Google Scholar 

  28. Frostig RD et al (1990) Cortical functional architecture and local coupling between neuronal-activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci U S A 87:6082–6086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Radhakrishnan H, Wu W, Franceschini MA (2011) Study of neurovascular coupling by modulating neuronal activity with GABA. Brain Res 1372:1–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Dale AM (1999) Optimal experimental design for event related fMRI. Hum Brain Mapp 8:109–114

    Article  CAS  PubMed  Google Scholar 

  31. Srinivasan VJ, Chan AC, Lam EY (2012) Doppler OCT and OCT angiography for in vivo imaging of vascular physiology. In: Liu G (ed) Selected topics in optical coherence tomography. InTech, Rijeka

    Google Scholar 

  32. Frykholm P et al (2005) Relationship between cerebral blood flow and oxygen metabolism, and extracellular glucose and lactate concentrations during middle cerebral artery occlusion and reperfusion: a microdialysis and positron emission tomography study in nonhuman primates. J Neurosurg 102:1076–1084

    Article  PubMed  Google Scholar 

  33. Srinivasan VJ et al (2009) Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography. Opt Lett 34:3086–3088

    Article  PubMed Central  PubMed  Google Scholar 

  34. Franceschini MA et al (2008) Coupling between somatosensory evoked potentials and hemodynamic response in the rat. Neuroimage 41:189–2003

    Article  PubMed Central  PubMed  Google Scholar 

  35. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This research is supported by the US National Institutes of Health (NIH) grants R01-EB001954 and R00-NS067050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek J. Srinivasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Radhakrishnan, H., Franceschini, M.A., Srinivasan, V.J. (2014). Neurovascular Coupling Investigated by Simultaneous Optical Coherence Tomography and Electrophysiology. In: Zhao, M., Ma, H., Schwartz, T. (eds) Neurovascular Coupling Methods. Neuromethods, vol 88. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0724-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0724-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0723-6

  • Online ISBN: 978-1-4939-0724-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics