Skip to main content

Cerebral Monitoring and Surveillance Using High-Resolution Functional Optical Imaging

  • Protocol
  • First Online:
Neurovascular Coupling Methods

Abstract

Near-infrared (NIR) optical techniques, using large-area sensing arrays that provide for transcranial measures of cortical function, are finding increasing use for functional assessment of brain activity. In this chapter, we review current capabilities of these methodologies and describe their application to an in vivo large animal model, Bonnet macaque, for the purpose of imaging hemodynamic responses to clinically significant events, including detection of cerebral ischemia and hemorrhage. The described methodology outlines the technology and method of high-density diffuse optical tomography (DOT), as explored using recently developed analysis resources whose accuracy is independently validated. Also discussed are solutions to commonly encountered problems related to data collection and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Updated mild traumatic brain injury guideline for adults: a part of CDC’s “Heads Up” series. http://www.cdc.gov/concussion/pdf/TBI_Clinicians_Factsheet-a.pdf

  2. Saunders D, Jäger HR, Murray AD, Stevens JM (2008) Skull and brain: methods of examination and anatomy. In: Grainger RC, Allison D, Adam, Dixon AK (eds) Diagnostic radiology: a textbook of medical imaging, 5th edn. Churchill Livingstone, New York, Chapter 55

    Google Scholar 

  3. Wilkinson ID, Paley MNJ (2008) Magnetic resonance imaging: basic principles. In: Grainger RC, Allison D, Adam A, Dixon AK (eds) Diagnostic radiology: a textbook of medical imaging, 5th edn. Churchill Livingstone, New York, Chapter 5

    Google Scholar 

  4. Klunk WE, Engler H et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55(3): 306–319

    Article  CAS  PubMed  Google Scholar 

  5. Stanzione P, Marciani MG, Maschio M, Bassetti MA, Spanedda F, Pierantozzi M, Semprini R, Bernardi G (1996) Quantitative EEG changes in non-demented Parkinson’s disease patients before and during L-dopa therapy. Eur J Neurol 3:354–362

    Article  Google Scholar 

  6. Castellanos NP, Paúl N, Ordóñez VE, Demuynck O, Bajo R, Campo P, Bilbao A, Ortiz T, del-Pozo F, Maestú F (2010) Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury. Brain 133:2365–2381

    Article  PubMed  Google Scholar 

  7. Niedermeyer E, da Silva FL (2004) Electroencephalography: basic principles, clinical applications, and related fields. Lippincot Williams & Wilkins, New York. ISBN 0-7817-5126-8

    Google Scholar 

  8. Swartz BE (1998) The advantages of digital over analog recording techniques. Electroencephalogr Clin Neurophysiol 106(2):113–117

    Article  CAS  PubMed  Google Scholar 

  9. Hansen PC, Kringelbach ML, Salmelin R (eds) (2010) MEG: an introduction to methods. Oxford University Press Inc., New York

    Google Scholar 

  10. Lindauer U, Gethmann J, Kühl M, Kohl-Bareis M, Dirnagl U (2003) Neuronal activity-induced changes of local cerebral microvascular blood oxygenation in the rat: effect of systemic hyperoxia or hypoxia. Brain Res 975(1–2):135–140

    Article  CAS  PubMed  Google Scholar 

  11. Bailey DL, Townsend DW, Valk PE, Maisey MN (2005) Positron emission tomography: basic sciences. Springer, Secaucus, NJ. ISBN 1-85233-798-2

    Book  Google Scholar 

  12. Buxton RB (2002) Introduction to functional magnetic resonance imaging: principles and techniques. Cambridge University Press, Cambridge. ISBN 0-521-58113-3

    Book  Google Scholar 

  13. Cabeza R, Kingstone A (eds) (2006) Handbook of functional neuroimaging of cognition, 2nd edn. MIT Press, Cambridge, MA. ISBN 0-262-03344-5

    Google Scholar 

  14. Moonen CTW, Bandettini PA (eds) (2000) Functional MRI. Springer, New York, Chapters 9–11

    Google Scholar 

  15. Blas ML, Lobato EB, Martin T (1999) Noninvasive infrared spectroscopy as a monitor of retrograde cerebral perfusion during deep hypothermia. J Cardiothorac Vasc Anesth 13(2):244–245

    Article  CAS  PubMed  Google Scholar 

  16. Prabhune A, Sehic A, Spence PA, Church T, Edmonds HL Jr (2002) Cerebral oximetry provides early warning of oxygen delivery failure during cardiopulmonary bypass. J Cardiothorac Vasc Anesth 16(2):204–206

    Article  PubMed  Google Scholar 

  17. Davie SN, Grocott HP (2012) Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology 116(4):834–840

    Article  CAS  PubMed  Google Scholar 

  18. Slater JP, Guarino T, Stack J, Vinod K, Bustami RT, Brown JM III, Rodriguez AL, Magovern CJ, Zaubler T, Freundlich K, Parr GV (2009) Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg 87(1):36–44, discussion 44–5

    Article  PubMed  Google Scholar 

  19. Edmonds HL Jr, Ganzel BL, Austin EH III (2004) Cerebral oximetry for cardiac and vascular surgery. Semin Cardiothorac Vasc Anesth 8(2):147–166

    Article  PubMed  Google Scholar 

  20. Ma H, Zhao M, Schwartz TH (2013) Dynamic neurovascular coupling and uncoupling during ictal onset, propagation, and termination revealed by simultaneous in vivo optical imaging of neural activity and local blood volume. Cereb Cortex 23(4):885–899

    Article  PubMed Central  PubMed  Google Scholar 

  21. Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  CAS  PubMed  Google Scholar 

  22. Barbour RL, Graber HL, Aronson R, Lubowsky J (1990) Model for 3-D optical imaging of tissue. International geoscience and remote sensing symposium (IGARSS), vol 2, pp 1395–1399

    Google Scholar 

  23. Barbour RL, Lubowsky J, Graber HL (1988) Use of reflectance spectrophotometry as a possible 3-dimensional spectroscopic imaging technique. FASEB J 2:a1772

    Google Scholar 

  24. Graber HL, Chang J, Aronson R, Barbour RL (1993) A perturbation model for imaging in dense scattering media: derivation and evaluation of imaging operators. In: Mueller GJ, Chance B, Alfano RR, Arridge SR, Beuthan J, Gratton E, Kaschke M, Masters BR, Svanberg S, van der Zee P (eds) Medical optical tomography: functional imaging and monitoring, vol IS11. Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, pp 121–143

    Google Scholar 

  25. Arridge SR (1999) Optical tomography in medical imaging. Inverse Probl 15(2):R41–R93

    Article  Google Scholar 

  26. Colier W, Quaresima V, Barattelli G, Cavallari P, van der Sluijs M, Ferrari M (1997) Detailed evidence of cerebral hemoglobin oxygenation in response to motor cortical activation revealed by a continuous wave spectrometer with 10 Hz temporal resolution. Proc SPIE 2979:390–396

    Article  CAS  Google Scholar 

  27. Delpy DT, Cope M (1997) Quantification in tissue near-infrared spectroscopy. Philos Trans R Soc Lond B Biol Sci 352:649–659

    Article  CAS  PubMed Central  Google Scholar 

  28. Eda H, Oda I, Ito Y, Wada Y, Oikawa Y, Tsunazawa Y, Takada M, Tsuchiya Y, Yamashita Y, Oda M, Sassaroli A, Yamada Y, Tamura M (1999) Multichannel time-resolved optical tomographic imaging system. Rev Sci Instrum 70:3595–3602

    Article  CAS  Google Scholar 

  29. Gratton E, Mantulin WW, vandeVen MJ, Fishkin JB, Maris MB, Chance B (1993) A novel approach to laser tomography. Bioimaging 1:40–46

    Article  Google Scholar 

  30. Hock C, Villringer K, Müller-Spahn F, Wenzel R, Heekeren H, Schuh-Hofer S, Hofmann M, Minoshima S, Schwaiger M, Dirnagl U, Villringer A (1997) Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer’s disease monitored by means of near-infrared spectroscopy (NIRS)-correlation with simultaneous rCBF-PET measurements. Brain Res 755:293–303

    Article  CAS  PubMed  Google Scholar 

  31. Villringer A, Chance B (1997) Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 20:435–442

    Article  CAS  PubMed  Google Scholar 

  32. Ferrari M, Quaresima V (2012) A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63:921–935

    Article  PubMed  Google Scholar 

  33. Koizumi H, Yamamoto T, Maki A, Yamashita Y, Sato H, Kawaguchi H, Ichikawa N (2003) Optical topography: practical problems and new applications. Appl Opt 42:3054–3062

    Article  PubMed  Google Scholar 

  34. Piper SK, Krueger A, Koch SP, Mehnert J, Habermehl C, Steinbrink J, Obrig H, Schmitz CH (2014) A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. Neuroimage 85(pt 1):64–71

    Article  PubMed  Google Scholar 

  35. Fish RE, Brown MJ, Danneman PJ, Karas AZ (2008) Anesthesia and analgesia in laboratory animals. Elsevier Inc., San Diego, CA. ISBN 978-0-12-373898-1

    Google Scholar 

  36. Schmitz CH, Löcker M, Lasker JM, Hielscher AH, Barbour RL (2002) Instrumentation for fast functional optical tomography. Rev Sci Instrum 73:429–439

    Article  CAS  Google Scholar 

  37. Schmitz CH, Graber HL, Pei Y, Farber MB, Stewart M, Levina RD, Levin MB, Xu Y, Barbour RL (2005) Dynamic studies of small animals with a four-color DOT imager. Rev Sci Instrum 76:094302

    Article  Google Scholar 

  38. Scholkmann F, Wolf M (2013) General equation for the differential pathlength factor of the frontal human head depending on wavelength and age. J Biomed Opt 18(10):105004

    Article  PubMed  Google Scholar 

  39. Schmitz CH, Klemer DP, Hardin RE, Katz MS, Pei Y, Graber HL, Levin MB, Levina RD, Franco NA, Solomon WB, Barbour RL (2005) Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements. Appl Optics 44:2140–2153

    Article  Google Scholar 

  40. Xu Y, Ewald A, Graber HL, Nichols JD, Pflieger ME, Ossadtchi A, Schmitz CH, Barbour RL (2012) A computing environment for multimodal integration of EEG and fNIRS. Poster 46 at functional near infrared spectroscopy, London, UK, 26–28 October 2012

    Google Scholar 

  41. Graber HL, Xu Y, Pei Y, Barbour RL (2005) Spatial deconvolution technique to improve the accuracy of reconstructed three-dimensional diffuse optical tomographic images. Appl Optics 44:941–953

    Article  Google Scholar 

  42. Xu Y, Graber HL, Barbour RL (2007) An image correction algorithm for functional 3D DOT brain imaging. Appl Optics 46:1693–1704

    Article  Google Scholar 

  43. Barbour RL, Graber HL, Xu Y, Pei Y, Schmitz CH, Pfeil DS, Tyagi A, Andronica R, Lee DC, Barbour S-LS, Nichols JD, Pflieger ME (2012) A programmable laboratory testbed in support of evaluation of functional brain activation and connectivity. IEEE Trans Neural Syst Rehabil Eng 20:170–183

    Article  PubMed  Google Scholar 

  44. McLaren DG, Kosmatka KJ, Oakes TR, Kroenke CD, Kohama SG, Matochik JA, Ingram DK, Johnson SC (2009) A population-average MRI-based atlas collection of the rhesus macaque. Neuroimage 45:52–59

    Article  PubMed Central  PubMed  Google Scholar 

  45. Okamoto M et al (2005) Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI. NeuroImage 27: 842–851

    Google Scholar 

  46. Fazil S, Mehnert J, Steinbrink J, Curio G, Villringer A, Muller KR, Blankertz B (2012) Enhanced performance by a hybrid NIRS-EEG brain computer interface. Neuroimage 59: 519–529

    Article  Google Scholar 

  47. Wylie GW, Graber HL, Voelbel GT, Kohl AD, DeLuca J, Pei Y, Xu Y, Barbour RL (2009) Using co-variations in the Hb signal to detect visual activation: a near infrared spectroscopic imaging study. Neuroimage 47:473–481

    Article  PubMed  Google Scholar 

  48. Fantini S et al (2013) Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity and oxygen consumption: implications for functional neuroimaging and coherent hemodynamic spectroscopy (CHS). Neuroimage S1053–8199(13):00315–00317

    Google Scholar 

  49. Chen S et al (2002) Auditory-evoked cerebral oxygenation changes in hypoxic-ischemic encephalopathy of newborn infants monitored by near infrared spectroscopy. Early Hum Dev 67:113–121

    Article  PubMed  Google Scholar 

  50. Okamoto M et al (2006) Prefrontal activity during taste encoding: an fNIRS study. Neuroimage 47(2):220–232

    Google Scholar 

  51. Holper L, Muehlemann T, Scholkmann F, Eng K, Kiper D, Wolf M (2010) Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS). J Neuroeng Rehabil 7:57

    Article  PubMed Central  PubMed  Google Scholar 

  52. White BR, Culver JP (2010) Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance. J Biomed Opt 15:026006

    Article  PubMed Central  PubMed  Google Scholar 

  53. Habermehl C, Holtze S, Steinbrink J, Koch SP, Obrig H, Mehnert J, Schmitz CH (2012) Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography. Neuroimage 59: 3201–3211

    Article  PubMed Central  PubMed  Google Scholar 

  54. Hyde DC, Boas DA, Blair C, Carey S (2010) Near-infrared spectroscopy shows right parietal specialization for number in pre-verbal infants. Neuroimage 53:647–652

    Article  PubMed Central  PubMed  Google Scholar 

  55. Nakahachi T, Ishii R, Iwase M, Canuet L, Takahashi H, Kurimoto R, Ikezawa K, Azechi M, Kajimoto O, Takeda M (2010) Frontal cortex activation associated with speeded processing of visuospatial working memory revealed by multichannel near-infrared spectroscopy during Advanced Trail Making Test performance. Behav Brain Res 215:21–27

    Article  PubMed  Google Scholar 

  56. Kameyama M, Fukuda M, Yamagishi Y, Sato T, Uehara T, Ito M, Suto T, Mikuni M (2006) Frontal lobe function in bipolar disorder: a multichannel near-infrared spectroscopy study. Neuroimage 29:172–184

    Article  PubMed  Google Scholar 

  57. Stankovic MR, Maulik D, Rosenfeld W, Stubblefield PG, Kofinas AD, Gratton E, Franceschini MA, Fantini S, Hueber DM (2000) Role of frequency domain optical spectroscopy in the detection of neonatal brain hemorrhage—a newborn piglet study. J Matern Fetal Med 9(2):142–149

    CAS  PubMed  Google Scholar 

  58. Leistner S et al (2011) Non-invasive simultaneous recording of neuronal and vascular signals in subacute ischemic stroke. Biomed Tech (Berl) 56:85–90

    Article  Google Scholar 

  59. Zweifel C et al (2010) Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke 41:1963–1968

    Article  PubMed  Google Scholar 

  60. Salonia R, Bell MJ, Kochanek PM, Berger RP (2012) Cerebral hemorrhage / ischemia in DOT the utility of near infrared spectroscopy in detecting intracranial hemorrhage in children. J Neurotrauma 29(6):1047–1053

    Article  PubMed Central  PubMed  Google Scholar 

  61. Stankovic MR, Maulik D, Rosenfeld W, Stubblefield PG, Kofinas AD, Drexler S, Nair R, Franceschini MA, Hueber D, Gratton E, Fantini S (1999) Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets. J Perinat Med 27:279–286

    Article  CAS  PubMed  Google Scholar 

  62. Takahashi T, Takikawa Y, Kawagoe R, Shibuya S, Iwano T, Kitazawa S (2011) Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task. Neuroimage 57:991–1002

    Article  PubMed  Google Scholar 

  63. Strangman G, Boas DA, Sutton JP (2002) Non-invasive neuroimaging using near-infrared light. Biol Psychiatry 52:679–693

    Article  PubMed  Google Scholar 

  64. Al abdi R, Graber HL, Xu Y, Barbour RL (2011) Optomechanical imaging system for breast cancer detection. J Opt Soc Am A Opt Image Sci Vis 28:2473–2493

    Article  PubMed  Google Scholar 

  65. Kak AC, Slaney M (1999) Principle of computerized tomographic imaging, classics in applied mathematics. SIAM, Philadelphia, PA

    Google Scholar 

  66. Fang Q, Boas DA (2009) Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt Express 17(22):20178–20190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Dehghani H, Eames ME, Yalavarthy PK, Davis SC, Srinivasan S, Carpenter DM, Pogue BW, Paulsen KD (2008) Near infrared optical tomography using NIRSFAST: algorithm for numerical model and image reconstruction. Comm Numer Meth Eng 25:711–732

    Article  Google Scholar 

  68. Pei Y, Graber HL, Barbour RL (2001) Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging. Appl Optics 40:5755–5769

    Article  CAS  Google Scholar 

  69. Graber HL, Pei Y, Barbour RL (2002) Imaging of spatiotemporal coincident states by DC optical tomography. IEEE Trans Med Imaging 21:852–866

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Institutes of Health (NIH) under Grants nos. R21NS067278, R42NS050007, and 5R44NS049734; by Defense Advanced Research Projects Agency project N66001-10-C-2008; and by the Empire Clinical Research Investigator Program (ECRIP) of the New York State Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall L. Barbour Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Uglialoro, A.D. et al. (2014). Cerebral Monitoring and Surveillance Using High-Resolution Functional Optical Imaging. In: Zhao, M., Ma, H., Schwartz, T. (eds) Neurovascular Coupling Methods. Neuromethods, vol 88. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0724-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0724-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0723-6

  • Online ISBN: 978-1-4939-0724-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics