Skip to main content

Simultaneous Multi-Wavelength Optical Imaging of Neuronal and Hemodynamic Activity

  • Protocol
  • First Online:
Neurovascular Coupling Methods

Part of the book series: Neuromethods ((NM,volume 88))

Abstract

Functional brain imaging techniques, such as functional magnetic resonance imaging, infer changes in underlying neural activity from perfusion-related signals and can be sampled from large areas of cortex to examine hemodynamic network activity. However, measurement of the underlying neuronal activity in a correspondingly widespread network is not available for comparison. In order to accurately understand the origins of these hemodynamic signals and the mechanisms of neurovascular coupling, it is critical to be able to measure widespread neuronal activity simultaneously and homotopically with the vascular signal. For this reason, we designed a simultaneous multi-wavelength optical imaging system that can provide high-resolution spatiotemporal information of neuronal and hemodynamic activities, and their inter-relationship. We have demonstrated that this technique is an effective method with which to study neurovascular coupling during spontaneous brain activity, and pathological conditions such as epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonhoeffer T, Grinvald A (1996) Optical imaging based on intrinsic signals. The methodology. In: Toga AW, Mazziota JC (eds) Brain mapping. The methods. Academic Press, San Diego, pp 55–99

    Google Scholar 

  2. Frostig RD, Lieke EE, Ts’o DY, Grinvald A (1990) Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci U S A 87(16):6082–6086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324(6095):361–364

    Article  CAS  PubMed  Google Scholar 

  4. Grinvald A, Shoham D, Shmuel A, Glaser D, Vanzetta I, Shtoyerman E, Slovin H, Sterkin A, Wijnbergen C, Hildesheim R, Arieli A (1999) In-vivo optical imaging of cortical architecture and dynamics. In: Windhorst U, Johansson H (eds) Modern techniques in neuroscience research. Springer, New York

    Google Scholar 

  5. Narayan SM, Santori EM, Blood AJ, Burton JS, Toga AW (1994) Imaging optical reflectance in rodent barrel and forelimb sensory cortex. Neuroimage 1(3):181–190. doi:10.1006/nimg.1994.1003, pii: S1053-8119(84)71003-2

    Article  CAS  PubMed  Google Scholar 

  6. Narayan SM, Santori EM, Toga AW (1994) Mapping functional activity in rodent cortex using optical intrinsic signals. Cereb Cortex 4(2):195–204

    Article  CAS  PubMed  Google Scholar 

  7. Cohen LB, Salzberg BM, Grinvald A (1978) Optical methods for monitoring neuron activity. Annu Rev Neurosci 1:171–182

    Article  CAS  PubMed  Google Scholar 

  8. Ross WN, Salzberg BM, Cohen LB, Davila HV (1974) A large change in dye absorption during the action potential. Biophys J 14(12):983–986. doi:10.1016/S0006-3495(74)85963-1, pii: S0006-3495(74)85963-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Salzberg BM, Davila HV, Cohen LB (1973) Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature 246(5434):508–509

    Article  CAS  PubMed  Google Scholar 

  10. Salzberg BM, Grinvald A, Cohen LB, Davila HV, Ross WN (1977) Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J Neurophysiol 40(6):1281–1291

    CAS  PubMed  Google Scholar 

  11. Grinvald A, Ross WN, Farber I (1981) Simultaneous optical measurements of electrical activity from multiple sites on processes of cultured neurons. Proc Natl Acad Sci U S A 78(5):3245–3249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Grinvald A, Manker A, Segal M (1982) Visualization of the spread of electrical activity in rat hippocampal slices by voltage-sensitive optical probes. J Physiol 333:269–291

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Shoham D, Glaser DE, Arieli A, Kenet T, Wijnbergen C, Toledo Y, Hildesheim R, Grinvald A (1999) Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24(4):791–802

    Article  CAS  PubMed  Google Scholar 

  14. Grinvald A, Hildesheim R (2004) VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5(11):874–885

    Article  CAS  PubMed  Google Scholar 

  15. Kee MZ, Wuskell JP, Loew LM, Augustine GJ, Sekino Y (2008) Imaging activity of neuronal populations with new long-wavelength voltage-sensitive dyes. Brain Cell Biol 36(5–6):157–172. doi:10.1007/s11068-009-9039-x

    Article  PubMed Central  PubMed  Google Scholar 

  16. Grewe BF, Helmchen F (2009) Optical probing of neuronal ensemble activity. Curr Opin Neurobiol 19(5):520–529. doi:10.1016/j.conb.2009.09.003, pii: S0959-4388(09)00125-1

    Article  CAS  PubMed  Google Scholar 

  17. Nedergaard M, Rodriguez JJ, Verkhratsky A (2010) Glial calcium and diseases of the nervous system. Cell Calcium 47(2):140–149. doi:10.1016/j.ceca.2009.11.010, pii: S0143-4160(09)00191-2

    Article  CAS  PubMed  Google Scholar 

  18. Michel K, Michaelis M, Mazzuoli G, Mueller K, Vanden Berghe P, Schemann M (2011) Fast calcium and voltage-sensitive dye imaging in enteric neurones reveal calcium peaks associated with single action potential discharge. J Physiol 589(pt 24):5941–5947. doi:10.1113/jphysiol.2011.219550, pii: jphysiol.2011.219550

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Schulz K, Sydekum E, Krueppel R, Engelbrecht CJ, Schlegel F, Schroter A, Rudin M, Helmchen F (2012) Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat Methods 9(6):597–602. doi:10.1038/nmeth.2013, pii: nmeth.2013

    Article  CAS  PubMed  Google Scholar 

  20. Bouchard MB, Chen BR, Burgess SA, Hillman EM (2009) Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics. Opt Express 17(18):15670–15678. doi:10.1364/OE.17.015670, pii: 185149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ma H, Zhao M, Schwartz TH (2012) Dynamic neurovascular coupling and uncoupling during ictal onset, propagation, and termination revealed by simultaneous in vivo optical imaging of neural activity and local blood volume. Cereb Cortex. doi:10.1093/cercor/bhs079, pii: bhs079

    PubMed Central  Google Scholar 

  22. Kennerley AJ, Berwick J, Martindale J, Johnston D, Papadakis N, Mayhew JE (2005) Concurrent fMRI and optical measures for the investigation of the hemodynamic response function. Magn Reson Med 54(2):354–365

    Article  PubMed  Google Scholar 

  23. Sheth SA, Nemoto M, Guiou M, Walker M, Pouratian N, Toga AW (2004) Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron 42(2):347–355

    Article  CAS  PubMed  Google Scholar 

  24. Slovin H, Arieli A, Hildesheim R, Grinvald A (2002) Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys. J Neurophysiol 88(6):3421–3438

    Article  PubMed  Google Scholar 

  25. Engelbrecht CJ, Gobel W, Helmchen F (2009) Enhanced fluorescence signal in nonlinear microscopy through supplementary fiber-optic light collection. Opt Express 17(8):6421–6435, pii: 178935

    Article  CAS  PubMed  Google Scholar 

  26. Chemla S, Chavane F (2010) Voltage-sensitive dye imaging: technique review and models. J Physiol Paris 104(1–2):40–50. doi:10.1016/j.jphysparis.2009.11.009, pii: S0928-4257(09)00091-6

    Article  CAS  PubMed  Google Scholar 

  27. Kelly JP, Van Essen DC (1974) Cell structure and function in the visual cortex of the cat. J Physiol 238(3):515–547

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Ma Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ma, H., Zhao, M., Harris, S., Schwartz, T.H. (2014). Simultaneous Multi-Wavelength Optical Imaging of Neuronal and Hemodynamic Activity. In: Zhao, M., Ma, H., Schwartz, T. (eds) Neurovascular Coupling Methods. Neuromethods, vol 88. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0724-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0724-3_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0723-6

  • Online ISBN: 978-1-4939-0724-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics