Skip to main content

Physiological Basis of BOLD fMRI Decreases

  • Protocol
  • First Online:
Neurovascular Coupling Methods

Part of the book series: Neuromethods ((NM,volume 88))

Abstract

Recent studies suggest that positive functional magnetic resonance imaging (fMRI) signal changes in the cortex under normal physiological conditions are closely related to increased neuronal activity. However, the physiological basis of negative blood oxygen level-dependent (BOLD) fMRI signal changes in the cortex as well as in subcortical structures are less well understood. Animal models that employ combined neuroimaging and direct electrophysiological measurements provide a powerful avenue for studying the complex relationships between negative fMRI changes and neuronal activity under normal and abnormal conditions (such as epilepsy). Several animal studies have shown that fMRI decreases do not necessarily translate to decreased electrophysiological signals. Here, we review three such scenarios: (1) increased local field potentials (LFP) occur during cortical slow oscillations despite reduced mean neuronal firing, resulting in decreased BOLD, cerebral blood flow (CBF) and cerebral blood volume (CBV); (2) massive increases in neuronal activity during hippocampal seizures exceed the ability of CBF to meet metabolic demands leading to decreased local BOLD fMRI signals; (3) reverse coupling of neuronal activity and CBF in the basal ganglia leads to increased neuronal firing and LFP during normal somatosensory stimulation and spike-wave seizures, along with a paradoxical decrease in BOLD fMRI, CBF, and CBV. A better understanding of the physiological basis underlying BOLD fMRI decreases can provide improved interpretation of fMRI data in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogawa S et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Huettel SA (2004) Non-linearities in the blood-oxygenation-level dependent (BOLD) response measured by functional magnetic resonance imaging (fMRI). Conf Proc IEEE Eng Med Biol Soc 6:4413–4416

    CAS  PubMed  Google Scholar 

  3. Logothetis N et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    Article  CAS  PubMed  Google Scholar 

  4. Smith AJ et al (2002) Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc Natl Acad Sci U S A 99(16):10765–10770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Herman P et al (2009) Cerebral oxygen demand for short-lived and steady-state events. J Neurochem 109(suppl 1):73–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Sanganahalli BG et al (2009) Oxidative neuroenergetics in event-related paradigms. J Neurosci 29(6):1707–1718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Motelow JE, Blumenfeld H (2009) Functional neuroimaging of spike-wave seizures. Methods Mol Biol 489:189–209

    Article  PubMed Central  PubMed  Google Scholar 

  8. Shulman RG, Rothman DL, Hyder F (2007) A BOLD search for baseline. Neuroimage 36(2):277–281

    Article  PubMed Central  PubMed  Google Scholar 

  9. Shmuel A et al (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9(4):569–577

    Article  CAS  PubMed  Google Scholar 

  10. Barks SK, Parr LA, Rilling JK (2013) The default mode network in chimpanzees (Pan troglodytes) is similar to that of humans. Cereb Cortex

    Google Scholar 

  11. Yakushev I et al (2013) Metabolic and structural connectivity within the default mode network relates to working memory performance in young healthy adults. Neuroimage 79:184–190

    Article  PubMed  Google Scholar 

  12. Danielson NB, Guo JN, Blumenfeld H (2011) The default mode network and altered consciousness in epilepsy. Behav Neurol 24:55–65

    Article  PubMed Central  PubMed  Google Scholar 

  13. Raichle ME et al (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bai X et al (2010) Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J Neurosci 30(17):5884–5893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Berman R et al (2010) Simultaneous EEG, fMRI, and behavior in typical childhood absence seizures. Epilepsia 51(10):2011–2022

    Article  PubMed Central  PubMed  Google Scholar 

  16. Englot DJ et al (2008) Remote effects of focal hippocampal seizures on the rat neocortex. J Neurosci 28(36):9066–9081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Mishra AM et al (2011) Where fMRI and electrophysiology agree to disagree: corticothalamic and striatal activity patterns in the WAG/Rij rat. J Neurosci 31(42):15053–15064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Schridde U et al (2008) Negative BOLD with large increases in neuronal activity. Cereb Cortex 18(8):1814–1827

    Article  PubMed Central  PubMed  Google Scholar 

  19. Suh M et al (2006) Neurovascular coupling and oximetry during epileptic events. Mol Neurobiol 33(3):181–197

    Article  CAS  PubMed  Google Scholar 

  20. Bahar S et al (2006) Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’. Neuroreport 17(5):499–503

    Article  PubMed  Google Scholar 

  21. ILAE (1981) Proposal for revised clinical and electroencephalographic classification of epileptic seizures. From the Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 22(4):489–501.

    Google Scholar 

  22. Berg AT et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 51(4):676–685

    Article  PubMed  Google Scholar 

  23. Blumenfeld H (2005) Cellular and network mechanisms of spike-wave seizures. Epilepsia 46(suppl 9):21–33

    Article  CAS  PubMed  Google Scholar 

  24. Blumenfeld H (2002) The thalamus and seizures. Arch Neurol 59(1):135–137

    Article  PubMed  Google Scholar 

  25. Blumenfeld H, McCormick DA (2000) Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J Neurosci 20(13):5153–5162

    CAS  PubMed  Google Scholar 

  26. Kostopoulos GK (2001) Involvement of the thalamocortical system in epileptic loss of consciousness. Epilepsia 42(suppl 3):13–19

    Article  PubMed  Google Scholar 

  27. McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures. Annu Rev Physiol 63:815–846

    Article  CAS  PubMed  Google Scholar 

  28. Williams D (1953) A study of thalamic and cortical rhythms in petit mal. Brain 76(1):50–69

    Article  CAS  PubMed  Google Scholar 

  29. Buzsaki G, Kaila K, Raichle M (2007) Inhibition and brain work. Neuron 56(5):771–783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hyder F et al (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 26(7):865–877

    Article  CAS  PubMed  Google Scholar 

  31. Riera JJ et al (2008) The micro-architecture of the cerebral cortex: functional neuroimaging models and metabolism. Neuroimage 40(4):1436–1459

    Article  PubMed  Google Scholar 

  32. Shulman RG et al (2004) Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci 27(8):489–495

    Article  CAS  PubMed  Google Scholar 

  33. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145

    Article  CAS  PubMed  Google Scholar 

  34. Hyder F et al (2001) Quantitative functional imaging of the brain: towards mapping neuronal activity by BOLD fMRI. NMR Biomed 14(7–8):413–431

    Article  CAS  PubMed  Google Scholar 

  35. Ogawa S et al (1998) On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct 27:447–474

    Article  CAS  PubMed  Google Scholar 

  36. Hyder F, Rothman DL, Shulman RG (2002) Total neuroenergetics support localized brain activity: implications for the interpretation of fMRI. Proc Natl Acad Sci U S A 99(16):10771–10776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hoge RD, Pike GB (2001) Oxidative metabolism and the detection of neuronal activation via imaging. J Chem Neuroanat 22(1–2):43–52

    Article  CAS  PubMed  Google Scholar 

  38. Kennan RP, Zhong J, Gore JC (1994) Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med 31(1):9–21

    Article  CAS  PubMed  Google Scholar 

  39. Ogawa S et al (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64(3):803–812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Nersesyan H et al (2004) Relative changes in cerebral blood flow and neuronal activity in local microdomains during generalized seizures. J Cereb Blood Flow Metab 24(9):1057–1068

    Article  PubMed  Google Scholar 

  41. Martin C et al (2006) Haemodynamic and neural responses to hypercapnia in the awake rat. Eur J Neurosci 24(9):2601–2610

    Article  PubMed  Google Scholar 

  42. Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357(1424):1003–1037

    Article  PubMed Central  PubMed  Google Scholar 

  43. Shmuel A et al (2002) Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36(6):1195–1210

    Article  CAS  PubMed  Google Scholar 

  44. Shulman GL et al (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9(5):648–663

    Article  CAS  PubMed  Google Scholar 

  45. Harel N et al (2002) Origin of negative blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab 22(8):908–917

    Article  PubMed  Google Scholar 

  46. Ingvar M, Siesjo BK (1983) Local blood flow and glucose consumption in the rat brain during sustained bicuculline-induced seizures. Acta Neurol Scand 68(3):129–144

    Article  CAS  PubMed  Google Scholar 

  47. Pereira de Vasconcelos A, Ferrandon A, Nehlig A (2002) Local cerebral blood flow during lithium-pilocarpine seizures in the developing and adult rat: role of coupling between blood flow and metabolism in the genesis of neuronal damage. J Cereb Blood Flow Metab 22(2):196–205

    Article  CAS  PubMed  Google Scholar 

  48. van Eijsden P et al (2004) In vivo 1H magnetic resonance spectroscopy, T2-weighted and diffusion-weighted MRI during lithium-pilocarpine-induced status epilepticus in the rat. Brain Res 1030(1):11–18

    Article  PubMed  Google Scholar 

  49. Schwartz TH (2005) The application of optical recording of intrinsic signals to simultaneously acquire functional, pathological and localizing information and its potential role in neurosurgery. Stereotact Funct Neurosurg 83(1):36–44

    Article  PubMed  Google Scholar 

  50. Schwartz TH (2003) Optical imaging of epileptiform events in visual cortex in response to patterned photic stimulation. Cereb Cortex 13(12):1287–1298

    Article  PubMed  Google Scholar 

  51. Schwartz TH, Bonhoeffer T (2001) In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nat Med 7(9):1063–1067

    Article  CAS  PubMed  Google Scholar 

  52. Nersesyan H et al (2004) Dynamic fMRI and EEG recordings during spike-wave seizures and generalized tonic-clonic seizures in WAG/Rij rats. J Cereb Blood Flow Metab 24(6):589–599

    Article  PubMed  Google Scholar 

  53. Stefanovic B et al (2005) Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. Neuroimage 28(1):205–215

    Article  PubMed  Google Scholar 

  54. Slaght SJ et al (2004) On the activity of the corticostriatal networks during spike-and-wave discharges in a genetic model of absence epilepsy. J Neurosci 24(30):6816–6825

    Article  CAS  PubMed  Google Scholar 

  55. Hui KK et al (2000) Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects. Hum Brain Mapp 9(1):13–25

    Article  CAS  PubMed  Google Scholar 

  56. Moeller F et al (2008) Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges. Neuroimage 39(4):1839–1849

    Article  PubMed  Google Scholar 

  57. Moeller F et al (2008) Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia 49(9):1510–1519

    Article  PubMed  Google Scholar 

  58. Choi JK et al (2006) Brain hemodynamic changes mediated by dopamine receptors: role of the cerebral microvasculature in dopamine-mediated neurovascular coupling. Neuroimage 30(3):700–712

    Article  PubMed  Google Scholar 

  59. Shih YY et al (2009) A new scenario for negative functional magnetic resonance imaging signals: endogenous neurotransmission. J Neurosci 29(10):3036–3044

    Article  CAS  PubMed  Google Scholar 

  60. Shih YY et al (2011) Striatal and cortical BOLD, blood flow, blood volume, oxygen consumption, and glucose consumption changes in noxious forepaw electrical stimulation. J Cereb Blood Flow Metab 31(3):832–841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Haider B et al (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26(17):4535–4545

    Article  CAS  PubMed  Google Scholar 

  62. Steriade M, Nunez A, Amzica F (1993) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13(8):3252–3265

    CAS  PubMed  Google Scholar 

  63. Englot DJ et al (2009) Cortical deactivation induced by subcortical network dysfunction in limbic seizures. J Neurosci 29(41):13006–13018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grants R01 NS049307 (H.B.), R01 MH067528 (F.H.), P30 NS052519 (F.H.) and by the Betsy and Jonathan Blattmachr family.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hal Blumenfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kim, R., Hyder, F., Blumenfeld, H. (2014). Physiological Basis of BOLD fMRI Decreases. In: Zhao, M., Ma, H., Schwartz, T. (eds) Neurovascular Coupling Methods. Neuromethods, vol 88. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0724-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0724-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0723-6

  • Online ISBN: 978-1-4939-0724-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics