Skip to main content

The RIPper Case: Identification of RNA-Binding Protein Targets by RNA Immunoprecipitation

  • Protocol
  • First Online:
Plant Circadian Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1158))

Abstract

Control at the posttranscriptional level emerges as an important layer of regulation in the circadian timing system. RNA-binding proteins that specifically interact with cis-regulatory motifs within pre-mRNAs are key elements of this regulation. While the ability to interact with RNA in vitro has been demonstrated for numerous Arabidopsis RNA-binding proteins, a full understanding of posttranscriptional networks controlled by an RNA-binding protein requires the identification of its immediate in vivo targets. Here we describe differential RNA immunoprecipitation in transgenic Arabidopsis thaliana plants expressing RNA-binding protein variants epitope-tagged with green fluorescent protein. To control for RNAs that nonspecifically co-purify with the RNA-binding protein, transgenic plants are generated with a mutated version of the RNA-binding protein that is not capable of binding to its target RNAs. The RNA-binding protein variants are expressed under the control of their authentic promoter and cis-regulatory motifs. Incubation of the plants with formaldehyde in vivo cross-links the proteins to their RNA targets. A whole-cell extract is then prepared and subjected to immunoprecipitation with an antibody against the GFP tag and to mock precipitation with an antibody against the unrelated red fluorescent protein. The RNAs coprecipitating with the proteins are eluted from the immunoprecipitate and identified via reverse transcription-PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harmer SL, Hogenesch JB, Straume M et al (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113

    Article  CAS  PubMed  Google Scholar 

  2. Michael TP, Mockler TC, Breton G et al (2008) Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet 4:e14

    Article  PubMed Central  PubMed  Google Scholar 

  3. Michael TP, McClung CR (2003) Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. Plant Physiol 132:629–639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Nagel DH, Kay SA (2012) Complexity in the wiring and regulation of plant circadian networks. Curr Biol 22:R648–R657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Staiger D, Shin J, Johansson M et al (2013) The circadian clock goes genomic. Genome Biol 14:208

    Article  PubMed  Google Scholar 

  6. Kojima S, Shingle DL, Green CB (2011) Post-transcriptional control of circadian rhythms. J Cell Sci 124:311–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Staiger D, Köster T (2011) Spotlight on post-transcriptional control in the circadian system. Cell Mol Life Sci 68:71–83

    Article  CAS  PubMed  Google Scholar 

  8. Staiger D, Green R (2011) RNA-based regulation in the plant circadian clock. Trends Plant Sci 16:517–523

    Article  CAS  PubMed  Google Scholar 

  9. So WV, Rosbash M (1997) Post-transcriptional regulation contributes to Drosophila clock gene mRNA cycling. EMBO J 16:7146–7155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gutierrez RA, Ewing RM, Cherry JM et al (2002) Identification of unstable transcripts in Arabidopsis by cDNA microarray analysis: rapid decay is associated with a group of touch- and specific clock-controlled genes. Proc Natl Acad Sci U S A 99:11513–11518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Staiger D (2001) RNA-binding proteins and circadian rhythms in Arabidopsis thaliana. Philo Trans R Soc Lond B Biol Sci 356:1755–1759

    Article  CAS  Google Scholar 

  12. Wang D, Liang X, Chen X et al (2013) Ribonucleoprotein complexes that control circadian clocks. Int J Mol Sci 14:9018–9036

    Article  PubMed Central  PubMed  Google Scholar 

  13. Mittag M (2003) The function of circadian RNA-binding proteins and their cis-acting elements in microalgae. Chronobiol Int 20:529–541

    Article  CAS  PubMed  Google Scholar 

  14. Newby LM, Jackson FR (1996) Regulation of a specific circadian clock output pathway by lark, a putative RNA-binding protein with repressor activity. J Neurobiol 31:117–128

    Article  CAS  PubMed  Google Scholar 

  15. Sanchez SE, Petrillo E, Beckwith EJ et al (2010) A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 468:112–116

    Article  CAS  PubMed  Google Scholar 

  16. Deng X, Gu L, Liu C et al (2010) Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Proc Natl Acad Sci U S A 107:19114–19119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hong S, Song HR, Lutz K et al (2010) Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107:21211–21216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jones MA, Williams BA, McNicol J et al (2012) Mutation of Arabidopsis spliceosomal timekeeper locus1 causes circadian clock defects. Plant Cell 24:4907–4916

    Article  PubMed Central  PubMed  Google Scholar 

  19. Staiger D, Heintzen C (1999) The circadian system of Arabidopsis thaliana: forward and reverse genetic approaches. Chronobiol Int 16:1–16

    Article  CAS  PubMed  Google Scholar 

  20. Staiger D, Zecca L, Wieczorek Kirk DA et al (2003) The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. Plant J 33:361–371

    Article  CAS  PubMed  Google Scholar 

  21. Schöning JC, Streitner C, Meyer IM et al (2008) Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Res 36:6977–6987

    Article  PubMed Central  PubMed  Google Scholar 

  22. Streitner C, Köster T, Simpson CG et al (2012) An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with target transcripts in Arabidopsis thaliana. Nucleic Acids Res 40:11240–11255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Streitner C, Simpson CG, Shaw P et al (2013) Small changes in ambient temperature affect alternative splicing in Arabidopsis thaliana. Plant Signal Behav 8:e24638

    Article  PubMed Central  PubMed  Google Scholar 

  24. James AB, Syed NH, Bordage S et al (2012) Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 24:961–981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Filichkin SA, Priest HD, Givan SA et al (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20:45–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sanchez SE, Petrillo E, Kornblihtt AR et al (2011) Alternative splicing at the right time. RNA Biol 8:954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Bartok O, Kyriacou CP, Levine J et al (2013) Adaptation of molecular circadian clockwork to environmental changes: a role for alternative splicing and miRNAs. Proc R Soc B Biol Sci 280:20130011

    Article  Google Scholar 

  28. Stubblefield JJ, Terrien J, Green C (2012) Nocturnin: at the crossroads of clocks and metabolism. Trends Endocrinol Metabol 23:326

    Article  CAS  Google Scholar 

  29. Lee KH, Woo KC, Kim DY et al (2011) Rhythmic interaction between Period1 mRNA and HnRNP Q leads to circadian time-dependent translation. Mol Cell Biol 32:717

    Article  PubMed  Google Scholar 

  30. Mili S, Steitz JA (2004) Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. Rna 10:1692–1694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Terzi LC, Simpson GG (2009) Arabidopsis RNA immunoprecipitation. Plant J 59:163–168

    Article  CAS  PubMed  Google Scholar 

  32. Köster T, Staiger D (2014) RNA-binding protein immunoprecipitation from whole-cell extracts. Arabidopsis protocols. Methods Mol Biol 1062:679–695

    Google Scholar 

  33. Rothbauer U, Zolghadr K, Tillib S et al (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 3:887–889

    Article  CAS  PubMed  Google Scholar 

  34. Rothbauer U, Zolghadr K, Muyldermans S et al (2008) A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol Cell Proteomics 7:282–289

    Article  CAS  PubMed  Google Scholar 

  35. Staiger D, Becker F, Schell J et al (1991) Purification of tobacco nuclear proteins binding to a CACGTG motif of the chalcone synthase promoter by DNA affinity chromatography. Eur J Biochem 199:519–527

    Article  CAS  PubMed  Google Scholar 

  36. Zhao B, Schneid C, Iliev D et al (2004) The circadian RNA-binding protein CHLAMY 1 represents a novel type heteromer of RNA recognition motif and lysine homology domain-containing subunits. Eukaryot Cell 3:815–825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Schöning JC, Streitner C, Page DR et al (2007) Autoregulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. Plant J 52:1119–1130

    Article  PubMed  Google Scholar 

  38. Streitner C, Hennig L, Korneli C et al (2010) Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7. BMC Plant Biol 10:221

    Article  PubMed Central  PubMed  Google Scholar 

  39. Fu ZQ, Guo M, Jeong BR et al (2007) A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447:284–288

    Article  CAS  PubMed  Google Scholar 

  40. Jeong B-R, Lin Y, Joe A et al (2011) Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity. J Biol Chem 286:43272–43281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Nicaise V, Joe A, Jeong B et al (2013) Pseudomonas HopU1 affects interaction of plant immune receptor mRNAs to the RNA-binding protein GRP7. EMBO J 32:701–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Staiger D, Korneli C, Lummer M et al (2013) Emerging role for RNA-based regulation in plant immunity. New Phytol 197:394–404

    Article  CAS  PubMed  Google Scholar 

  43. Haring M, Offermann S, Danker T et al (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3:11

    Article  PubMed Central  PubMed  Google Scholar 

  44. Zhao J, Ohsumi TK, Kung JT et al (2010) Genome-wide Identification of Polycomb-Associated RNAs by RIP-seq. Mol Cell 40:939–953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Tenenbaum SA, Carson CC, Lager PJ et al (2000) Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci U S A 97:14085–14090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Mukherjee N, Corcoran DL, Nusbaum JD et al (2011) Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell 43:327–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Galgano A, Gerber AP (2011) RNA-binding protein immunopurification-microarray (RIP-Chip) analysis to profile localized RNAs. Methods Mol Biol 714:369–385

    Article  CAS  PubMed  Google Scholar 

  49. Jensen KB, Darnell RB (2008) CLIP: crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding proteins. Methods Mol Biol 488:85–98

    Article  CAS  PubMed  Google Scholar 

  50. Ule J, Jensen KB, Ruggiu M et al (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215

    Article  CAS  PubMed  Google Scholar 

  51. Knuckles P, Vogt MA, Lugert S et al (2012) Drosha regulates neurogenesis by controlling neurogenin 2 expression independent of microRNAs. Nat Neurosci 15:962–969

    Article  CAS  PubMed  Google Scholar 

  52. Trinkle-Mulcahy L, Boulon S, Lam YW et al (2008) Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J Cell Biol 183:223–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Niranjanakumari S, Lasda E, Brazas R et al (2002) Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26:182–190

    Article  CAS  PubMed  Google Scholar 

  54. Hummon AB, Lim SR, Difilippantonio MJ et al (2007) Isolation and solubilization of proteins after TRIzol extraction of RNA and DNA from patient material following prolonged storage. Biotechniques 42:467–472

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kristina Neudorf for expert technical assistance. This work was supported by the DFG (STA 653).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothee Staiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Köster, T., Haas, M., Staiger, D. (2014). The RIPper Case: Identification of RNA-Binding Protein Targets by RNA Immunoprecipitation. In: Staiger, D. (eds) Plant Circadian Networks. Methods in Molecular Biology, vol 1158. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0700-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0700-7_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0699-4

  • Online ISBN: 978-1-4939-0700-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics