Skip to main content

Quantitative Transcriptome Analysis Using RNA-seq

  • Protocol
  • First Online:
Plant Circadian Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1158))

Abstract

RNA-seq has emerged as the technology of choice to quantify gene expression. This technology is a convenient accurate tool to quantify diurnal changes in gene expression, gene discovery, differential use of promoters, and splice variants for all genes expressed in a single tissue. Thus, RNA-seq experiments provide sequence information and absolute expression values about transcripts in addition to relative quantification available with microarrays or qRT-PCR. The depth of information by sequencing requires careful assessment of RNA intactness and DNA contamination. Although the RNA-seq is comparatively recent, a standard analysis framework has emerged with the packages of Bowtie2, TopHat, and Cufflinks. With rising popularity of RNA-seq tools have become manageable for researchers without much bioinformatical knowledge or programming skills. Here, we present a workflow for a RNA-seq experiment from experimental planning to biological data extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiao YL, Tausta SL, Gandotra N et al (2009) A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 41:258–263

    Article  CAS  PubMed  Google Scholar 

  2. Li PH, Ponnala L, Gandotra N et al (2011) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42:1060–1067

    Article  Google Scholar 

  3. Davidson RM, Gowda M, Moghe G et al (2012) Comparative transcriptomics of three poaceae species reveals patterns of gene expression evolution. Plant J 71:492–502

    CAS  PubMed  Google Scholar 

  4. Bräutigam A, Kajala K, Wullenweber J et al (2011) An mrna blueprint for c4 photosynthesis derived from comparative transcriptomics of closely related c3 and c4 species. Plant Physiol 155:142–156

    Article  PubMed Central  PubMed  Google Scholar 

  5. Gowik U, Brautigam A, Weber KL et al (2011) Evolution of c4 photosynthesis in the genus flaveria: how many and which genes does it take to make C4? Plant Cell 23:2087–2105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Pick TR, Bräutigam A, Schlüter U et al (2011) Systems analysis of a maize leaf developmental gradient redefines the current c4 model and provides candidates for regulation. Plant Cell 23:4208–4220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chomczynski P, Sacchi N (1987) Single-step method of rna isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  8. Chomczynski P, Sacchi N (2006) The single-step method of rna isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1: 581–585

    Article  CAS  PubMed  Google Scholar 

  9. Sangha JS, Gu K, Kaur J et al (2010) An improved method for rna isolation and cdna library construction from immature seeds of jatropha curcas l. BMC Res Notes 3:126

    Article  PubMed Central  PubMed  Google Scholar 

  10. Mueller O, Hahnenberger K, Dittmann M et al (2000) A microfluidic system for high-speed reproducible DNA sizing and quantitation. Electrophoresis 21:128–134

    Article  CAS  PubMed  Google Scholar 

  11. Schroeder A, Mueller O, Stocker S et al (2006) The rin: an rna integrity number for assigning integrity values to rna measurements. BMC Mol Biol 7:3

    Article  PubMed Central  PubMed  Google Scholar 

  12. Braeutigam A, Gowik U (2010) What can next generation sequencing do for you? Next generation sequencing as a valuable tool in plant research. Plant Biol 12:831–841

    Article  CAS  Google Scholar 

  13. Schliesky S, Gowik U, Weber APM et al (2012) Rna-seq assembly - Are we there yet? Front Plant Sci 3:220

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    Article  CAS  PubMed  Google Scholar 

  15. Ewing B, Hillier L, Wendl MC et al (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    Article  CAS  PubMed  Google Scholar 

  16. Blankenberg D, Gordon A, Von Kuster G et al (2010) Manipulation of fastq data with galaxy. Bioinformatics 26:1783–1785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed Central  PubMed  Google Scholar 

  18. Trapnell C, Pachter L, Salzberg SL (2009) Tophat: discovering splice junctions with rna-seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ferragina P, Manzini G (2001) An experimental study of a compressed index. Inf Sci 135: 13–28

    Article  Google Scholar 

  20. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and samtools. Bioinformatics 25:2078–2079

    Article  PubMed Central  PubMed  Google Scholar 

  21. Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by rna-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of rna-seq experiments with tophat and cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed Central  PubMed  Google Scholar 

  24. Fisher RA (1922) On the interpretation of χ2 from contingency tables, and the calculation of p. J R Stat Soc 85:87–94

    Article  Google Scholar 

  25. Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56:52–64

    Article  Google Scholar 

  26. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate - A practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  27. Thimm O, Blasing O, Gibon Y et al (2004) Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  CAS  PubMed  Google Scholar 

  28. Usadel B, Nagel A, Thimm O et al (2005) Extension of the visualization tool mapman to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 138: 1195–1204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Howe E, Holton K, Nair S et al (2010) Mev: multiexperiment viewer

    Google Scholar 

  30. Katari MS, Nowicki SD, Aceituno FF et al (2010) Virtualplant: a software platform to support systems biology research. Plant Physiol 152:500–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Langfelder P, Horvath S (2012) Fast r functions for robust correlations and hierarchical clustering. J Stat Softw 46:1–17

    Google Scholar 

  33. Allen JD, Xie Y, Chen M et al (2012) Comparing statistical methods for constructing large scale gene networks. PLoS One 7:e29348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Jay JJ, Eblen JD, Zhang Y et al (2012) A systematic comparison of genome-scale clustering algorithms. BMC Bioinformatics 13:7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Bräutigam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Külahoglu, C., Bräutigam, A. (2014). Quantitative Transcriptome Analysis Using RNA-seq. In: Staiger, D. (eds) Plant Circadian Networks. Methods in Molecular Biology, vol 1158. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0700-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0700-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0699-4

  • Online ISBN: 978-1-4939-0700-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics