Skip to main content

Identification of DNA Damage Checkpoint-Dependent Protein Interactions in Saccharomyces cerevisiae Using Quantitative Mass Spectrometry

  • Protocol
  • First Online:
  • 3724 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1156))

Abstract

The DNA damage checkpoint (DDC) is an evolutionarily conserved signaling pathway that is crucial to maintain genomic integrity. In response to DNA damage, DDC kinases are rapidly activated and phosphorylate an elaborate network of substrates involved in multiple cellular processes. An important role of the DDC response is to assemble protein complexes. However, for most of the DDC substrates, how the DDC-dependent phosphorylation modulates their network of interactions remains to be established. Here, we present a protocol for the identification of DDC-dependent protein–protein interactions based on Stable Isotope Labeling of Amino acids in Cell culture (SILAC) followed by affinity-tagged protein purification and quantitative mass spectrometry analysis. Based on a model study using Saccharomyces cerevisiae, we provide a method that can be generally applied to study the role of kinases in mediating protein–protein interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hartwell LH, Kastan MB (1994) Cell cycle control and cancer. Science 266(5192): 1821–1828

    Article  CAS  PubMed  Google Scholar 

  2. Kolodner RD, Putnam CD, Myung K (2002) Maintenance of genome stability in Saccharomyces cerevisiae. Science 297(5581): 552–557. doi:10.1126/science.1075277

    Article  CAS  PubMed  Google Scholar 

  3. Nyberg KA, Michelson RJ, Putnam CW, Weinert TA (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36:617–656. doi:10.1146/annurev.genet.36.060402.113540

    Article  CAS  PubMed  Google Scholar 

  4. Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408(6811):433–439. doi:10.1038/35044005

    Article  CAS  PubMed  Google Scholar 

  5. Foiani M, Pellicioli A, Lopes M, Lucca C, Ferrari M, Liberi G, Muzi Falconi M, Plevani P (2000) DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. Mutat Res 451(1–2):187–196

    Article  CAS  PubMed  Google Scholar 

  6. Tercero JA, Diffley JF (2001) Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412(6846):553–557. doi:10.1038/35087607

    Article  CAS  PubMed  Google Scholar 

  7. Branzei D, Foiani M (2006) The Rad53 signal transduction pathway: replication fork stabilization, DNA repair, and adaptation. Exp Cell Res 312(14):2654–2659. doi:10.1016/j.yexcr.2006.06.012

    Article  CAS  PubMed  Google Scholar 

  8. Labib K, De Piccoli G (2011) Surviving chromosome replication: the many roles of the S-phase checkpoint pathway. Philos Trans R Soc Lond B Biol Sci 366(1584):3554–3561. doi:10.1098/rstb.2011.0071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Keogh MC, Kim JA, Downey M, Fillingham J, Chowdhury D, Harrison JC, Onishi M, Datta N, Galicia S, Emili A, Lieberman J, Shen X, Buratowski S, Haber JE, Durocher D, Greenblatt JF, Krogan NJ (2006) A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature 439(7075):497–501. doi:10.1038/nature04384

    Article  CAS  PubMed  Google Scholar 

  10. Ohouo PY, Bastos de Oliveira FM, Almeida BS, Smolka MB (2010) DNA damage signaling recruits the Rtt107-Slx4 scaffolds via Dpb11 to mediate replication stress response. Mol Cell 39(2):300–306. doi:10.1016/j.molcel.2010.06.019

    Article  CAS  PubMed  Google Scholar 

  11. Polo SE, Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25(5):409–433. doi:10.1101/gad.2021311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Mohammad DH, Yaffe MB (2009) 14-3-3 proteins, FHA domains and BRCT domains in the DNA damage response. DNA Repair (Amst) 8(9):1009–1017. doi:10.1016/j.dnarep.2009.04.004

    Article  CAS  Google Scholar 

  13. Williams RS, Bernstein N, Lee MS, Rakovszky ML, Cui D, Green R, Weinfeld M, Glover JN (2005) Structural basis for phosphorylation-dependent signaling in the DNA-damage response. Biochem Cell Biol 83(6):721–727. doi:10.1139/o05-153

    Article  CAS  PubMed  Google Scholar 

  14. Smolka MB, Albuquerque CP, Chen SH, Zhou H (2007) Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci U S A 104(25):10364–10369. doi:10.1073/pnas.0701622104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chen SH, Albuquerque CP, Liang J, Suhandynata RT, Zhou H (2010) A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 285(17):12803–12812. doi:10.1074/jbc.M110.106989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166. doi:10.1126/science.1140321

    Article  CAS  PubMed  Google Scholar 

  17. Dunham WH, Mullin M, Gingras AC (2012) Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics 12(10):1576–1590. doi:10.1002/pmic.201100523

    Article  CAS  PubMed  Google Scholar 

  18. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  PubMed  Google Scholar 

  19. Tercero JA, Longhese MP, Diffley JF (2003) A central role for DNA replication forks in checkpoint activation and response. Mol Cell 11(5):1323–1336

    Article  CAS  PubMed  Google Scholar 

  20. Horvatovich P, Hoekman B, Govorukhina N, Bischoff R (2010) Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples. J Sep Sci 33(10):1421–1437. doi:10.1002/jssc.201000050

    Article  CAS  PubMed  Google Scholar 

  21. Michalski A, Damoc E, Hauschild JP, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S (2011) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics 10(9):M111.011015. doi:10.1074/mcp.M111.011015

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zhao X, Muller EG, Rothstein R (1998) A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell 2(3):329–340

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Beatriz S. Almeida for technical support. M.B.S. is supported by grants from the National Institute of Health (R01-GM097272) and American Cancer Society (RSG-11-146-01-DMC) and F.M.B.d.O. is supported by a Cornell Fleming Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus B. Smolka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

de Oliveira, F.M.B., Smolka, M.B. (2014). Identification of DNA Damage Checkpoint-Dependent Protein Interactions in Saccharomyces cerevisiae Using Quantitative Mass Spectrometry. In: Martins-de-Souza, D. (eds) Shotgun Proteomics. Methods in Molecular Biology, vol 1156. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0685-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0685-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0684-0

  • Online ISBN: 978-1-4939-0685-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics