Skip to main content

Determining Protein Subcellular Localization in Mammalian Cell Culture with Biochemical Fractionation and iTRAQ 8-Plex Quantification

  • Protocol
  • First Online:
Shotgun Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1156))

Abstract

Protein subcellular localization is a fundamental feature of posttranslational functional regulation. Traditional microscopy based approaches to study protein localization are typically of limited throughput, and dependent on the availability of antibodies with high specificity and sensitivity, or fluorescent fusion proteins. In this chapter we describe how Localization of Organelle Proteins by Isotope Tagging (LOPIT), a mass spectrometry based workflow coupling biochemical fractionation and iTRAQ™ 8-plex quantification, can be applied for the high-throughput characterization of protein localization in a mammalian cell culture line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunkley TP, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL et al (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci U S A 103(17):6518–6523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Sadowski PG, Dunkley TP, Shadforth IP, Dupree P, Bessant C, Griffin JL et al (2006) Quantitative proteomics approach to study subcellular localization of membrane proteins. Nat Protoc 1(4):1778–1789

    Article  CAS  PubMed  Google Scholar 

  3. Hall SL, Hester S, Griffin JL, Lilley KS, Jackson AP (2009) The organelle proteome of the DT40 lymphocyte cell line. Mol Cell Proteomics 8(6):1295–1305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Tan DJ, Dvinge H, Christoforou A, Bertone P, Martinez Arias A, Lilley KS (2009) Mapping organelle proteins and protein complexes in Drosophila melanogaster. J Proteome Res 8(6):2667–2678

    Article  CAS  PubMed  Google Scholar 

  5. de Duve C (1971) Tissue fraction-past and present. J Cell Biol 50(1):20

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24(21):2534–2536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  8. Lacerda CM, Xin L, Rogers I, Reardon KF (2008) Analysis of iTRAQ data using Mascot and Peaks quantification algorithms. Brief Funct Genomic Proteomic 7(2):119–126

    Article  CAS  PubMed  Google Scholar 

  9. Gatto L, Lilley KS (2012) MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics 28(2):288–289

    Article  CAS  PubMed  Google Scholar 

  10. Wang LH, Li DQ, Fu Y, Wang HP, Zhang JF, Yuan ZF et al (2007) pFind 2.0: a software package for peptide and protein identification via tandem mass spectrometry. Rapid Commun Mass Spectrom 21(18):2985–2991

    Article  CAS  PubMed  Google Scholar 

  11. Savitski MM, Mathieson T, Zinn N, Sweetman G, Doce C, Becher I et al (2013) Measuring and managing ratio compression for accurate iTRAQ/TMT quantification. J Proteome Res 12(8):3586–3598

    Article  CAS  PubMed  Google Scholar 

  12. Trotter MW, Sadowski PG, Dunkley TP, Groen AJ, Lilley KS (2010) Improved sub-cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions. Proteomics 10(23): 4213–4219

    Article  CAS  PubMed  Google Scholar 

  13. Gatto L, Breckels LM, Wieczorek S, Burger T, Lilley KS (2014) Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata. Bioinformatics (E-pub ahead of print)

    Google Scholar 

  14. Breckels LM, Gatto L, Christoforou A, Groen AJ, Lilley KS, Trotter MW (2013) The effect of organelle discovery upon sub-cellular protein localisation. J Proteomics 88:129–140

    Article  CAS  PubMed  Google Scholar 

  15. Ow SY, Salim M, Noirel J, Evans C, Rehman I, Wright PC (2009) iTRAQ underestimation in simple and complex mixtures: “the good, the bad and the ugly”. J Proteome Res 8(11): 5347–5355

    Article  CAS  PubMed  Google Scholar 

  16. Griffin TJ, Xie H, Bandhakavi S, Popko J, Mohan A, Carlis JV et al (2007) iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. J Proteome Res 6(11):4200–4209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Evans C, Noirel J, Ow SY, Salim M, Pereira-Medrano AG, Couto N et al (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 404(4):1011–1027

    Article  CAS  PubMed  Google Scholar 

  18. Christoforou AL, Lilley KS (2012) Isobaric tagging approaches in quantitative proteomics: the ups and downs. Anal Bioanal Chem 404(4):1029–1037

    Article  CAS  PubMed  Google Scholar 

  19. Ting L, Rad R, Gygi SP, Haas W (2011) MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods 8(11):937–940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wenger CD, Lee MV, Hebert AS, McAlister GC, Phanstiel DH, Westphall MS et al (2011) Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. Nat Methods 8(11):933–935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Dayon L, Sonderegger B, Kussmann M (2012) Combination of gas-phase fractionation and MS3 acquisition modes for relative protein quantification with isobaric tagging. J Proteome Res 11(10):5081–5089

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Daniel Nightingale and Julie Howard for their helpful comments to improve the clarity of the protocol. A.C. was funded by BBSRC grant BB/D526088/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Christoforou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Christoforou, A., Arias, A.M., Lilley, K.S. (2014). Determining Protein Subcellular Localization in Mammalian Cell Culture with Biochemical Fractionation and iTRAQ 8-Plex Quantification. In: Martins-de-Souza, D. (eds) Shotgun Proteomics. Methods in Molecular Biology, vol 1156. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0685-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0685-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0684-0

  • Online ISBN: 978-1-4939-0685-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics