Skip to main content

Novel Markers of Male Infertility

  • Protocol
  • First Online:
Human Fertility

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1154))

Abstract

Diagnostic tests should detect disease, have prognostic value, and aid in clinical decision making. Nowhere else in laboratory medicine does one have to interpret a subject’s results within the dynamic of a couple as in reproductive medicine. Abnormal markers of male reproduction do not necessarily mean sterility, but instead indicate problems with spermatogenesis, sperm maturation, transport through epididymis and ejaculatory duct, or abnormal ejaculatory function. Decades of research suggest that one test will never fit all scenarios and a battery of assays evaluating different aspects of male reproduction will likely have the best prognostic value. There is a strong need for standardization and harmonization of evolving assays to establish their clinical relevance. Next-generation genome sequencing and the discovery of small noncoding RNAs in sperm already are changing the field and permit further insight into the biology of male reproduction as well as offer new diagnostic tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao XW et al. (2011) A review of WHO laboratory manual for the examination and processing of human semen, (5th edn). Zhonghua Nan Ke Xue 17(12):1059–1063

    Google Scholar 

  2. Chandra A et al (2005) Fertility, family planning, and reproductive health of U.S. women: data from the 2002 National Survey of Family Growth. Vital Health Stat 23(25):1–160

    Google Scholar 

  3. Mosher WD (1985) Reproductive impairments in the United States, 1965–1982. Demography 22(3):415–430

    Article  CAS  PubMed  Google Scholar 

  4. Nangia AK, Likosky DS, Wang D (2010) Distribution of male infertility specialists in relation to the male population and assisted reproductive technology centers in the United States. Fertil Steril 94(2):599–609

    Article  PubMed  Google Scholar 

  5. Skakkebaek NE, Giwercman A, de Kretser D (1994) Pathogenesis and management of male infertility. Lancet 343(8911):1473–1479

    Article  CAS  PubMed  Google Scholar 

  6. Dohle GR, Elzanaty S, van Casteren NJ (2012) Testicular biopsy: clinical practice and interpretation. Asian J Androl 14(1):88–93

    Article  PubMed Central  PubMed  Google Scholar 

  7. Ostermeier GC et al (2005) Toward using stable spermatozoal RNAs for prognostic assessment of male factor fertility. Fertil Steril 83(6):1687–1694

    Article  PubMed  Google Scholar 

  8. Anton E, Krawetz SA (2012) Spermatozoa as biomarkers for the assessment of human male infertility and genotoxicity. Syst Biol Reprod Med 58(1):41–50

    Article  CAS  PubMed  Google Scholar 

  9. Howards SS (1997) Antoine van Leeuwenhoek and the discovery of sperm. Fertil Steril 67(1):16–17

    Article  CAS  PubMed  Google Scholar 

  10. De Jonge C (2012) Semen analysis: looking for an upgrade in class. Fertil Steril 97(2):260–266

    Article  PubMed  Google Scholar 

  11. Lu JC, Huang YF, Lu NQ (2010) WHO laboratory manual for the examination and processing of human semen: its applicability to andrology laboratories in China. Zhonghua Nan Ke Xue 16(10):867–871

    PubMed  Google Scholar 

  12. Franken DR, Oehninger S (2012) Semen analysis and sperm function testing. Asian J Androl 14(1):6–13

    Article  PubMed Central  PubMed  Google Scholar 

  13. Zinaman MJ et al (2000) Semen quality and human fertility: a prospective study with healthy couples. J Androl 21(1):145–153

    CAS  PubMed  Google Scholar 

  14. Larson KL et al (2000) Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Hum Reprod 15(8):1717–1722

    Article  CAS  PubMed  Google Scholar 

  15. Stahl PJ, Stember DS, Goldstein M (2012) Contemporary management of male infertility. Annu Rev Med 63:525–540

    Article  CAS  PubMed  Google Scholar 

  16. Duran HE et al (2002) Intrauterine insemination: a systematic review on determinants of success. Hum Reprod Update 8(4):373–384

    Article  CAS  PubMed  Google Scholar 

  17. Kruger TF et al (1986) Sperm morphologic features as a prognostic factor in in vitro fertilization. Fertil Steril 46(6):1118–1123

    CAS  PubMed  Google Scholar 

  18. Van Waart J et al (2001) Predictive value of normal sperm morphology in intrauterine insemination (IUI): a structured literature review. Hum Reprod Update 7(5):495–500

    Article  PubMed  Google Scholar 

  19. Menkveld R et al (1990) The evaluation of morphological characteristics of human spermatozoa according to stricter criteria. Hum Reprod 5(5):586–592

    CAS  PubMed  Google Scholar 

  20. Brugh VM 3rd, Lipshultz LI (2004) Male factor infertility: evaluation and management. Med Clin North Am 88(2):367–385

    Article  PubMed  Google Scholar 

  21. Chia SE, Tay SK, Lim ST (1998) What constitutes a normal seminal analysis? Semen parameters of 243 fertile men. Hum Reprod 13(12):3394–3398

    Article  CAS  PubMed  Google Scholar 

  22. Guzick DS et al (2001) Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med 345(19):1388–1393

    Article  CAS  PubMed  Google Scholar 

  23. Muller CH (2000) Rationale, interpretation, validation, and uses of sperm function tests. J Androl 21(1):10–30

    CAS  PubMed  Google Scholar 

  24. Menkveld R et al (1991) Detection of sperm antibodies on unwashed spermatozoa with the immunobead test: a comparison of results with the routine method and seminal plasma TAT titers and SCMC test. Am J Reprod Immunol 25(2):88–91

    Article  CAS  PubMed  Google Scholar 

  25. Gupta SK, Bhandari B (2011) Acrosome reaction: relevance of zona pellucida glycoproteins. Asian J Androl 13(1):97–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Litscher ES, Williams Z, Wassarman PM (2009) Zona pellucida glycoprotein ZP3 and fertilization in mammals. Mol Reprod Dev 76(10):933–941

    Article  CAS  PubMed  Google Scholar 

  27. Ikawa M et al (2010) Fertilization: a sperm’s journey to and interaction with the oocyte. J Clin Invest 120(4):984–994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kumar V et al (2009) Proteomic analysis of heparin-binding proteins from human seminal plasma: a step towards identification of molecular markers of male fertility. J Biosci 34(6):899–908

    Article  CAS  PubMed  Google Scholar 

  29. Perdrix A et al (2011) Assessment of acrosome and nuclear abnormalities in human spermatozoa with large vacuoles. Hum Reprod 26(1):47–58

    Article  CAS  PubMed  Google Scholar 

  30. Chaudhury K et al (2005) Acrosin activity as a potential marker for sperm membrane characteristics in unexplained male infertility. Fertil Steril 83(1):104–109

    Article  CAS  PubMed  Google Scholar 

  31. Mitchell V et al (2004) Proacrosin, an acrosomal marker for the detection of spermatogenic cells in ejaculates from azoospermic men. Gynecol Obstet Fertil 32(9):779–784

    Article  CAS  PubMed  Google Scholar 

  32. Furlong LI, Harris JD, Vazquez-Levin MH (2005) Binding of recombinant human proacrosin/acrosin to zona pellucida (ZP) glycoproteins. I. Studies with recombinant human ZPA, ZPB, and ZPC. Fertil Steril 83(6):1780–1790

    Article  CAS  PubMed  Google Scholar 

  33. Veaute C et al (2010) Anti-human proacrosin antibody inhibits the zona pellucida (ZP)-induced acrosome reaction of ZP-bound spermatozoa. Fertil Steril 93(7):2456–2459

    Article  CAS  PubMed  Google Scholar 

  34. Zini A et al (2001) Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril 75(4):674–677

    Article  CAS  PubMed  Google Scholar 

  35. Spano M et al (2000) Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril 73(1):43–50

    Article  CAS  PubMed  Google Scholar 

  36. Kumar K et al (2012) Predictive value of DNA integrity analysis in idiopathic recurrent pregnancy loss following spontaneous conception. J Assist Reprod Genet 29(9):861–867

    Google Scholar 

  37. Brahem S et al (2011) Semen parameters and sperm DNA fragmentation as causes of recurrent pregnancy loss. Urology 78(4):792–796

    Article  PubMed  Google Scholar 

  38. Tarozzi N et al (2007) Clinical relevance of sperm DNA damage in assisted reproduction. Reprod Biomed Online 14(6):746–757

    Article  CAS  PubMed  Google Scholar 

  39. Sharma RK, Said T, Agarwal A (2004) Sperm DNA damage and its clinical relevance in assessing reproductive outcome. Asian J Androl 6(2):139–148

    CAS  PubMed  Google Scholar 

  40. Manning JT, Chamberlain AT (1994) Sib competition and sperm competitiveness: an answer to “why so many sperms?” and the recombination/sperm number correlation. Proc Biol Sci 256(1346):177–182

    Article  CAS  PubMed  Google Scholar 

  41. Henkel R (2012) Sperm preparation: state-of-the-art–physiological aspects and application of advanced sperm preparation methods. Asian J Androl 14(2):260–269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Holt WV, Van Look KJ (2004) Concepts in sperm heterogeneity, sperm selection and sperm competition as biological foundations for laboratory tests of semen quality. Reproduction 127(5):527–535

    Article  CAS  PubMed  Google Scholar 

  43. Dugum M, Sandlow JI, Brannigan RE (2011) Sperm DNA damage evaluation techniques. J Androl 32(3):207–209

    Article  PubMed  Google Scholar 

  44. Evenson DP, Wixon R (2006) Clinical aspects of sperm DNA fragmentation detection and male infertility. Theriogenology 65(5):979–991

    Article  CAS  PubMed  Google Scholar 

  45. Sharma R, Masaki J, Agarwal A (2013) Sperm DNA fragmentation analysis using the TUNEL assay. Methods Mol Biol 927:121–136

    Article  CAS  PubMed  Google Scholar 

  46. Perreault SD et al (2000) Evaluation of aneuploidy and DNA damage in human spermatozoa: applications in field studies. Andrologia 32(4–5):247–254

    Article  CAS  PubMed  Google Scholar 

  47. Henkel R et al (2003) DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod Biomed Online 7(4):477–484

    Article  PubMed  Google Scholar 

  48. Templado C et al (2011) Advanced age increases chromosome structural abnormalities in human spermatozoa. Eur J Hum Genet 19(2):145–151

    Article  PubMed Central  PubMed  Google Scholar 

  49. Schlegel PN, Paduch DA (2005) Yet another test of sperm chromatin structure. Fertil Steril 84(4):854–859

    Article  PubMed  Google Scholar 

  50. Morris ID et al (2002) The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Hum Reprod 17(4):990–998

    Article  CAS  PubMed  Google Scholar 

  51. Schmid TE et al (2003) Genetic damage in oligozoospermic patients detected by fluorescence in-situ hybridization, inverse restriction site mutation assay, sperm chromatin structure assay and the Comet assay. Hum Reprod 18(7):1474–1480

    Article  CAS  PubMed  Google Scholar 

  52. Spano M et al (1998) The applicability of the flow cytometric sperm chromatin structure assay in epidemiological studies. Asclepios. Hum Reprod 13(9):2495–2505

    Article  CAS  PubMed  Google Scholar 

  53. Darzynkiewicz Z, Li X, Gong J (1994) Assays of cell viability: discrimination of cells dying by apoptosis. Methods Cell Biol 41:15–38

    Article  CAS  PubMed  Google Scholar 

  54. Potts RJ et al (1999) Sperm chromatin damage associated with male smoking. Mutat Res 423(1–2):103–111

    Article  CAS  PubMed  Google Scholar 

  55. Steger K, Cavalcanti MC, Schuppe HC (2011) Prognostic markers for competent human spermatozoa: fertilizing capacity and contribution to the embryo. Int J Androl 34(6 Pt 1):513–527

    Article  CAS  PubMed  Google Scholar 

  56. Steger K (1999) Transcriptional and translational regulation of gene expression in haploid spermatids. Anat Embryol (Berl) 199(6):471–487

    Article  CAS  Google Scholar 

  57. Zhang X, San Gabriel M, Zini A (2006) Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J Androl 27(3):414–420

    Article  PubMed  Google Scholar 

  58. Kramer JA, Krawetz SA (1997) RNA in spermatozoa: implications for the alternative haploid genome. Mol Hum Reprod 3(6):473–478

    Article  CAS  PubMed  Google Scholar 

  59. Krawetz SA (2005) Paternal contribution: new insights and future challenges. Nat Rev Genet 6(8):633–642

    Article  CAS  PubMed  Google Scholar 

  60. Krawetz SA et al (2011) A survey of small RNAs in human sperm. Hum Reprod 26(12):3401–3412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Hayashi K et al (2008) MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3(3):e1738

    Article  PubMed Central  PubMed  Google Scholar 

  62. Tong MH et al (2012) Two miRNA Clusters, Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biol Reprod 86(3):72

    Article  PubMed Central  PubMed  Google Scholar 

  63. Gillis AJ et al (2007) High-throughput microRNAome analysis in human germ cell tumours. J Pathol 213(3):319–328

    Article  CAS  PubMed  Google Scholar 

  64. McIver SC et al (2012) miRNA and mammalian male germ cells. Hum Reprod Update 18(1):44–59

    Article  CAS  PubMed  Google Scholar 

  65. He Z et al (2009) Small RNA molecules in the regulation of spermatogenesis. Reproduction 137(6):901–911

    Article  CAS  PubMed  Google Scholar 

  66. Saito K et al (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20(16):2214–2222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Megosh HB et al (2006) The role of PIWI and the miRNA machinery in Drosophila germline determination. Curr Biol 16(19):1884–1894

    Article  CAS  PubMed  Google Scholar 

  68. Kim VN (2006) Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes Dev 20(15):1993–1997

    Article  CAS  PubMed  Google Scholar 

  69. Ferlin A et al (2007) Male infertility: role of genetic background. Reprod Biomed Online 14(6):734–745

    Article  CAS  PubMed  Google Scholar 

  70. Mehta A, Paduch DA (2012) Klinefelter syndrome: an argument for early aggressive hormonal and fertility management. Fertil Steril 98(2):274–283

    Article  PubMed  Google Scholar 

  71. Schiff JD et al (2005) Success of testicular sperm extraction [corrected] and intracytoplasmic sperm injection in men with Klinefelter syndrome. J Clin Endocrinol Metab 90(11):6263–6267

    Article  CAS  PubMed  Google Scholar 

  72. Morel F et al (2003) An increased incidence of autosomal aneuploidies in spermatozoa from a patient with Klinefelter’s syndrome. Fertil Steril 79(Suppl 3):1644–1646

    Article  PubMed  Google Scholar 

  73. Lanfranco F et al (2004) Klinefelter’s syndrome. Lancet 364(9430):273–283

    Article  CAS  PubMed  Google Scholar 

  74. Paduch DA, Mielnik A, Schlegel PN (2005) Novel mutations in testis-specific ubiquitin protease 26 gene may cause male infertility and hypogonadism. Reprod Biomed Online 10(6):747–754

    Article  PubMed  Google Scholar 

  75. Massart A et al (2012) Genetic causes of spermatogenic failure. Asian J Androl 14(1):40–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Stahl PJ et al (2010) A decade of experience emphasizes that testing for Y microdeletions is essential in American men with azoospermia and severe oligozoospermia. Fertil Steril 94(5):1753–1756

    Article  CAS  PubMed  Google Scholar 

  77. Carrell DT, Aston KI (2011) The search for SNPs, CNVs, and epigenetic variants associated with the complex disease of male infertility. Syst Biol Reprod Med 57(1–2):17–26

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darius A. Paduch M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Funaro, M., Paduch, D.A. (2014). Novel Markers of Male Infertility. In: Rosenwaks, Z., Wassarman, P. (eds) Human Fertility. Methods in Molecular Biology, vol 1154. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0659-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0659-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0658-1

  • Online ISBN: 978-1-4939-0659-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics